1
0
Fork 0
cuberite-2a/src/Generating/EndGen.cpp

181 lines
5.9 KiB
C++

// EndGen.cpp
// Implements the cEndGen class representing the generator for the End, both as a HeightGen and CompositionGen
#include "Globals.h"
#include "EndGen.h"
#include "../IniFile.h"
#include "../LinearUpscale.h"
enum
{
// Interpolation cell size:
INTERPOL_X = 4,
INTERPOL_Y = 4,
INTERPOL_Z = 4,
// Size of chunk data, downscaled before interpolation:
DIM_X = 16 / INTERPOL_X + 1,
DIM_Y = 256 / INTERPOL_Y + 1,
DIM_Z = 16 / INTERPOL_Z + 1,
} ;
////////////////////////////////////////////////////////////////////////////////
// cEndGen:
cEndGen::cEndGen(int a_Seed) :
m_Seed(a_Seed),
m_Perlin(a_Seed),
m_VoidOffsetNoise(a_Seed + 1000),
m_AirThresholdMainIsland(0.0f),
m_AirThresholdOtherIslands(0.5f),
m_MainIslandSize(450),
m_BaseHeight(64),
m_TerrainTopMultiplier(10),
m_TerrainBottomMultiplier(40),
m_VoidOffsetNoiseMultiplier(50),
m_FrequencyX(80),
m_FrequencyY(80),
m_FrequencyZ(80)
{
m_Perlin.AddOctave(1, 1);
m_Perlin.AddOctave(2, 0.5);
m_Perlin.AddOctave(4, 0.25);
m_VoidOffsetNoise.AddOctave(1, 1);
m_VoidOffsetNoise.AddOctave(2, 0.5);
m_VoidOffsetNoise.AddOctave(4, 0.25);
}
void cEndGen::InitializeShapeGen(cIniFile & a_IniFile)
{
m_AirThresholdMainIsland = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenAirThresholdMainIsland", m_AirThresholdMainIsland));
m_AirThresholdOtherIslands = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenAirThresholdOtherIslands", m_AirThresholdOtherIslands));
m_MainIslandSize = a_IniFile.GetValueSetI("Generator", "EndGenMainIslandSize", m_MainIslandSize);
m_BaseHeight = a_IniFile.GetValueSetI("Generator", "EndGenBaseHeight", m_BaseHeight);
m_TerrainTopMultiplier = a_IniFile.GetValueSetI("Generator", "EndGenTerrainTopMultiplier", m_TerrainTopMultiplier);
m_TerrainBottomMultiplier = a_IniFile.GetValueSetI("Generator", "EndGenTerrainBottomMultiplier", m_TerrainBottomMultiplier);
m_VoidOffsetNoiseMultiplier = a_IniFile.GetValueSetI("Generator", "EndGenVoidOffsetNoiseMultiplier", m_VoidOffsetNoiseMultiplier);
m_FrequencyX = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenFrequencyX", m_FrequencyX));
m_FrequencyY = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenFrequencyY", m_FrequencyY));
m_FrequencyZ = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenFrequencyZ", m_FrequencyZ));
}
void cEndGen::GenShape(cChunkCoords a_ChunkCoords, cChunkDesc::Shape & a_Shape)
{
for (size_t i = 0; i < ARRAYCOUNT(a_Shape); i++)
{
a_Shape[i] = 0;
}
NOISE_DATATYPE NoiseData[cChunkDef::Width * cChunkDef::Width];
NOISE_DATATYPE VoidOffsetData[cChunkDef::Width * cChunkDef::Width];
NOISE_DATATYPE Workspace[cChunkDef::Width * cChunkDef::Width];
NOISE_DATATYPE StartX = static_cast<NOISE_DATATYPE>(a_ChunkCoords.m_ChunkX * cChunkDef::Width) / m_FrequencyX;
NOISE_DATATYPE EndX = static_cast<NOISE_DATATYPE>((a_ChunkCoords.m_ChunkX + 1) * cChunkDef::Width) / m_FrequencyX;
NOISE_DATATYPE StartZ = static_cast<NOISE_DATATYPE>(a_ChunkCoords.m_ChunkZ * cChunkDef::Width) / m_FrequencyZ;
NOISE_DATATYPE EndZ = static_cast<NOISE_DATATYPE>((a_ChunkCoords.m_ChunkZ + 1) * cChunkDef::Width) / m_FrequencyZ;
m_Perlin.Generate2D(NoiseData, cChunkDef::Width, cChunkDef::Width, StartX, EndX, StartZ, EndZ, Workspace);
m_VoidOffsetNoise.Generate2D(VoidOffsetData, cChunkDef::Width, cChunkDef::Width, StartX, EndX, StartZ, EndZ, Workspace);
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
NOISE_DATATYPE noise = NoiseData[z * cChunkDef::Width + x];
// The distance from spawn is used to create the void between the main island and the other islands.
double distanceFromSpawn = cChunkDef::RelativeToAbsolute({ x, 0, z }, a_ChunkCoords).Length();
// The main island can get a different airthreshold. This way the other island can be more sparse while the main island
// is one big island.
if (distanceFromSpawn > m_MainIslandSize)
{
if (noise <= m_AirThresholdOtherIslands)
{
continue;
}
noise -= m_AirThresholdOtherIslands;
}
else
{
if (noise <= m_AirThresholdMainIsland)
{
continue;
}
noise -= m_AirThresholdMainIsland;
}
NOISE_DATATYPE voidOffset = VoidOffsetData[z * cChunkDef::Width + x];
double maxHeightLimit;
if (distanceFromSpawn > m_MainIslandSize * 3)
{
// The distance from spawn is so big we don't need to calculate the max height anymore.
// In fact, if we don't cut it off somewhere there is a chance the maxheight gets too big which
// can cause corrupted looking terrain.
maxHeightLimit = static_cast<float>(cChunkDef::Height);
}
else
{
// Create a void between the main island and the other island using the formula 'x^3 - 3 * x' where x is distance from spawn.
double pow = std::pow((distanceFromSpawn - m_MainIslandSize) / m_MainIslandSize, 3);
double mult = 3 * ((distanceFromSpawn - m_MainIslandSize) / m_MainIslandSize);
maxHeightLimit = Clamp((pow - mult) * 100 + static_cast<double>(voidOffset) * m_VoidOffsetNoiseMultiplier, 0.0, static_cast<double>(cChunkDef::Height));
}
int maxHeight = static_cast<int>(Clamp(m_BaseHeight + static_cast<double>(noise) * m_TerrainTopMultiplier, 0.0, maxHeightLimit));
int minHeight = static_cast<int>(Clamp(m_BaseHeight - static_cast<double>(noise) * m_TerrainBottomMultiplier, 0.0, static_cast<double>(cChunkDef::Height)));
for (int y = minHeight; y < maxHeight; y++)
{
a_Shape[y + x * 256 + z * 256 * 16] = 1;
}
}
}
}
void cEndGen::ComposeTerrain(cChunkDesc & a_ChunkDesc, const cChunkDesc::Shape & a_Shape)
{
a_ChunkDesc.FillBlocks(E_BLOCK_AIR, 0);
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
if (a_Shape[(x + 16 * z) * 256 + y] != 0)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_END_STONE);
}
} // for y
} // for x
} // for z
}