1
0
Fork 0

Migrated random generators to std::random

This commit is contained in:
Tiger Wang 2014-10-19 14:10:18 +01:00
parent cc600de51f
commit aa19a3afb0
16 changed files with 102 additions and 556 deletions

View File

@ -27,7 +27,6 @@
#include "Item.h"
#include "Noise.h"
#include "Root.h"
#include "MersenneTwister.h"
#include "Entities/Player.h"
#include "BlockArea.h"
#include "Bindings/PluginManager.h"

View File

@ -25,8 +25,6 @@
#include "Root.h"
#include "Protocol/Authenticator.h"
#include "MersenneTwister.h"
#include "Protocol/ProtocolRecognizer.h"
#include "CompositeChat.h"
#include "Items/ItemSword.h"
@ -45,16 +43,6 @@
#define RECI_RAND_MAX (1.f/RAND_MAX)
inline int fRadRand(MTRand & r1, int a_BlockCoord)
{
return a_BlockCoord * 32 + (int)(16 * ((float)r1.rand() * RECI_RAND_MAX) * 16 - 8);
}
int cClientHandle::s_ClientCount = 0;

View File

@ -4,13 +4,15 @@
// Implements the cFastRandom class representing a fast random number generator
#include "Globals.h"
#include <time.h>
#include "FastRandom.h"
////////////////////////////////////////////////////////////////////////////////
// cFastRandom:
#if 0 && defined(_DEBUG)
// Self-test
// Both ints and floats are quick-tested to see if the random is calculated correctly, checking the range in ASSERTs,
@ -83,16 +85,8 @@ public:
int cFastRandom::m_SeedCounter = 0;
cFastRandom::cFastRandom(void) :
m_Seed(m_SeedCounter++),
m_Counter(0)
m_LinearRand(static_cast<unsigned>(std::chrono::system_clock::now().time_since_epoch().count()))
{
}
@ -102,82 +96,96 @@ cFastRandom::cFastRandom(void) :
int cFastRandom::NextInt(int a_Range)
{
ASSERT(a_Range <= 1000000); // The random is not sufficiently linearly distributed with bigger ranges
ASSERT(a_Range > 0);
// Make the m_Counter operations as minimal as possible, to emulate atomicity
int Counter = m_Counter++;
// Use a_Range, m_Counter and m_Seed as inputs to the pseudorandom function:
int n = a_Range + Counter * 57 + m_Seed * 57 * 57;
n = (n << 13) ^ n;
n = ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
return ((n / 11) % a_Range);
m_IntDistribution = std::uniform_int_distribution<>(0, a_Range - 1);
return m_IntDistribution(m_LinearRand);
}
int cFastRandom::NextInt(int a_Range, int a_Salt)
{
ASSERT(a_Range <= 1000000); // The random is not sufficiently linearly distributed with bigger ranges
ASSERT(a_Range > 0);
// Make the m_Counter operations as minimal as possible, to emulate atomicity
int Counter = m_Counter++;
// Use a_Range, a_Salt, m_Counter and m_Seed as inputs to the pseudorandom function:
int n = a_Range + Counter * 57 + m_Seed * 57 * 57 + a_Salt * 57 * 57 * 57;
n = (n << 13) ^ n;
n = ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
return ((n / 11) % a_Range);
m_LinearRand.seed(a_Salt);
m_IntDistribution = std::uniform_int_distribution<>(0, a_Range - 1);
return m_IntDistribution(m_LinearRand);
}
float cFastRandom::NextFloat(float a_Range)
{
// Make the m_Counter operations as minimal as possible, to emulate atomicity
int Counter = m_Counter++;
// Use a_Range, a_Salt, m_Counter and m_Seed as inputs to the pseudorandom function:
int n = (int)a_Range + Counter * 57 + m_Seed * 57 * 57;
n = (n << 13) ^ n;
n = ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
// Convert the integer into float with the specified range:
return (((float)n / (float)0x7fffffff) * a_Range);
m_FloatDistribution = std::uniform_real_distribution<float>(0, a_Range - 1);
return m_FloatDistribution(m_LinearRand);
}
float cFastRandom::NextFloat(float a_Range, int a_Salt)
{
// Make the m_Counter operations as minimal as possible, to emulate atomicity
int Counter = m_Counter++;
// Use a_Range, a_Salt, m_Counter and m_Seed as inputs to the pseudorandom function:
int n = (int)a_Range + Counter * 57 + m_Seed * 57 * 57 + a_Salt * 57 * 57 * 57;
n = (n << 13) ^ n;
n = ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
// Convert the integer into float with the specified range:
return (((float)n / (float)0x7fffffff) * a_Range);
m_LinearRand.seed(a_Salt);
m_FloatDistribution = std::uniform_real_distribution<float>(0, a_Range - 1);
return m_FloatDistribution(m_LinearRand);
}
int cFastRandom::GenerateRandomInteger(int a_Begin, int a_End)
{
cFastRandom Random;
return Random.NextInt(a_End - a_Begin + 1) + a_Begin;
m_IntDistribution = std::uniform_int_distribution<>(a_Begin, a_End - 1);
return m_IntDistribution(m_LinearRand);
}
////////////////////////////////////////////////////////////////////////////////
// MTRand:
MTRand::MTRand() :
m_MersenneRand(static_cast<unsigned>(std::chrono::system_clock::now().time_since_epoch().count()))
{
}
int MTRand::randInt(int a_Range)
{
m_IntDistribution = std::uniform_int_distribution<>(0, a_Range);
return m_IntDistribution(m_MersenneRand);
}
int MTRand::randInt()
{
m_IntDistribution = std::uniform_int_distribution<>(0, std::numeric_limits<int>::max());
return m_IntDistribution(m_MersenneRand);
}
double MTRand::rand(double a_Range)
{
m_DoubleDistribution = std::uniform_real_distribution<>(0, a_Range);
return m_DoubleDistribution(m_MersenneRand);
}

View File

@ -22,6 +22,7 @@ salts, the values they get will be different.
#pragma once
#include <random>
@ -30,6 +31,7 @@ salts, the values they get will be different.
class cFastRandom
{
public:
cFastRandom(void);
/// Returns a random int in the range [0 .. a_Range - 1]; a_Range must be less than 1M
@ -49,15 +51,33 @@ public:
/** Returns a random int in the range [a_Begin .. a_End] */
int GenerateRandomInteger(int a_Begin, int a_End);
protected:
int m_Seed;
int m_Counter;
/// Counter that is used to initialize the seed, incremented for each object created
static int m_SeedCounter;
} ;
private:
std::minstd_rand m_LinearRand;
std::uniform_int_distribution<> m_IntDistribution;
std::uniform_real_distribution<float> m_FloatDistribution;
};
class MTRand
{
public:
MTRand(void);
int randInt(int a_Range);
int randInt(void);
double rand(double a_Range);
private:
std::mt19937 m_MersenneRand;
std::uniform_int_distribution<> m_IntDistribution;
std::uniform_real_distribution<> m_DoubleDistribution;
};

View File

@ -6,7 +6,7 @@
#include "ChunkDesc.h"
#include "ComposableGenerator.h"
#include "Noise3DGenerator.h"
#include "../MersenneTwister.h"
#include "FastRandom.h"

View File

@ -240,6 +240,7 @@ template class SizeChecker<UInt16, 2>;
// STL stuff:
#include <thread>
#include <chrono>
#include <vector>
#include <list>
#include <deque>

View File

@ -1,456 +0,0 @@
// MersenneTwister.h
// Mersenne Twister random number generator -- a C++ class MTRand
// Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// Richard J. Wagner v1.1 28 September 2009 wagnerr@umich.edu
// The Mersenne Twister is an algorithm for generating random numbers. It
// was designed with consideration of the flaws in various other generators.
// The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
// are far greater. The generator is also fast; it avoids multiplication and
// division, and it benefits from caches and pipelines. For more information
// see the inventors' web page at
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
// Reference
// M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
// Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
// Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
// Copyright (C) 2000 - 2009, Richard J. Wagner
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. The names of its contributors may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
#ifndef MERSENNETWISTER_H
#define MERSENNETWISTER_H
// Not thread safe (unless auto-initialization is avoided and each thread has
// its own MTRand object)
#include <iostream>
#include <climits>
#include <cstdio>
#include <ctime>
#include <cmath>
class MTRand {
// Data
public:
typedef UInt32 uint32; // unsigned integer type, at least 32 bits
enum { N = 624 }; // length of state vector
enum { SAVE = N + 1 }; // length of array for save()
protected:
enum { M = 397 }; // period parameter
uint32 state[N]; // internal state
uint32 *pNext; // next value to get from state
uint32 left; // number of values left before reload needed
// Methods
public:
MTRand( const uint32 oneSeed ); // initialize with a simple uint32
MTRand( uint32 *const bigSeed, uint32 const seedLength = N ); // or array
MTRand(); // auto-initialize with /dev/urandom or time() and clock()
MTRand( const MTRand& o ); // copy
// Do NOT use for CRYPTOGRAPHY without securely hashing several returned
// values together, otherwise the generator state can be learned after
// reading 624 consecutive values.
// Access to 32-bit random numbers
uint32 randInt(); // integer in [0,2^32-1]
uint32 randInt( const uint32 n ); // integer in [0,n] for n < 2^32
double rand(); // real number in [0,1]
double rand( const double n ); // real number in [0,n]
double randExc(); // real number in [0,1)
double randExc( const double n ); // real number in [0,n)
double randDblExc(); // real number in (0,1)
double randDblExc( const double n ); // real number in (0,n)
double operator()(); // same as rand()
// Access to 53-bit random numbers (capacity of IEEE double precision)
double rand53(); // real number in [0,1)
// Access to nonuniform random number distributions
double randNorm( const double mean = 0.0, const double stddev = 1.0 );
// Re-seeding functions with same behavior as initializers
void seed( const uint32 oneSeed );
void seed( uint32 *const bigSeed, const uint32 seedLength = N );
void seed();
// Saving and loading generator state
void save( uint32* saveArray ) const; // to array of size SAVE
void load( uint32 *const loadArray ); // from such array
friend std::ostream& operator<<( std::ostream& os, const MTRand& mtrand );
friend std::istream& operator>>( std::istream& is, MTRand& mtrand );
MTRand& operator=( const MTRand& o );
protected:
void initialize( const uint32 oneSeed );
void reload();
uint32 hiBit( const uint32 u ) const { return u & 0x80000000UL; }
uint32 loBit( const uint32 u ) const { return u & 0x00000001UL; }
uint32 loBits( const uint32 u ) const { return u & 0x7fffffffUL; }
uint32 mixBits( const uint32 u, const uint32 v ) const
{ return hiBit(u) | loBits(v); }
uint32 magic( const uint32 u ) const
{ return loBit(u) ? 0x9908b0dfUL : 0x0UL; }
uint32 twist( const uint32 m, const uint32 s0, const uint32 s1 ) const
{ return m ^ (mixBits(s0,s1)>>1) ^ magic(s1); }
static uint32 hash( time_t t, clock_t c );
};
// Functions are defined in order of usage to assist inlining
inline MTRand::uint32 MTRand::hash( time_t t, clock_t c )
{
// Get a uint32 from t and c
// Better than uint32(x) in case x is floating point in [0,1]
// Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
static uint32 differ = 0; // guarantee time-based seeds will change
uint32 h1 = 0;
unsigned char *p = (unsigned char *) &t;
for( size_t i = 0; i < sizeof(t); ++i )
{
h1 *= UCHAR_MAX + 2U;
h1 += p[i];
}
uint32 h2 = 0;
p = (unsigned char *) &c;
for( size_t j = 0; j < sizeof(c); ++j )
{
h2 *= UCHAR_MAX + 2U;
h2 += p[j];
}
return ( h1 + differ++ ) ^ h2;
}
inline void MTRand::initialize( const uint32 seed )
{
// Initialize generator state with seed
// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
// In previous versions, most significant bits (MSBs) of the seed affect
// only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
uint32 *s = state;
uint32 *r = state;
uint32 i = 1;
*s++ = seed & 0xffffffffUL;
for( ; i < N; ++i )
{
*s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
r++;
}
}
inline void MTRand::reload()
{
// Generate N new values in state
// Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
static const int MmN = int(M) - int(N); // in case enums are unsigned
uint32 *p = state;
int i;
for( i = N - M; i--; ++p )
*p = twist( p[M], p[0], p[1] );
for( i = M; --i; ++p )
*p = twist( p[MmN], p[0], p[1] );
*p = twist( p[MmN], p[0], state[0] );
left = N, pNext = state;
}
inline void MTRand::seed( const uint32 oneSeed )
{
// Seed the generator with a simple uint32
initialize(oneSeed);
reload();
}
inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength )
{
// Seed the generator with an array of uint32's
// There are 2^19937-1 possible initial states. This function allows
// all of those to be accessed by providing at least 19937 bits (with a
// default seed length of N = 624 uint32's). Any bits above the lower 32
// in each element are discarded.
// Just call seed() if you want to get array from /dev/urandom
initialize(19650218UL);
uint32 i = 1;
uint32 j = 0;
uint32 k = ( (uint32)N > seedLength ? (uint32)N : seedLength );
for( ; k; --k )
{
state[i] =
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );
state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
state[i] &= 0xffffffffUL;
++i; ++j;
if( i >= N ) { state[0] = state[N-1]; i = 1; }
if( j >= seedLength ) j = 0;
}
for( k = N - 1; k; --k )
{
state[i] =
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );
state[i] -= i;
state[i] &= 0xffffffffUL;
++i;
if( i >= N ) { state[0] = state[N-1]; i = 1; }
}
state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array
reload();
}
inline void MTRand::seed()
{
// Seed the generator with an array from /dev/urandom if available
// Otherwise use a hash of time() and clock() values
// First try getting an array from /dev/urandom
/* // Commented out by FakeTruth because doing this 200 times a tick is SUUUUPEERRR SLOW!!~~!\D5Ne
FILE* urandom = fopen( "/dev/urandom", "rb" );
if( urandom )
{
uint32 bigSeed[N];
register uint32 *s = bigSeed;
register int i = N;
register bool success = true;
while( success && i-- )
success = fread( s++, sizeof(uint32), 1, urandom );
fclose(urandom);
if( success ) { seed( bigSeed, N ); return; }
}
*/
// Was not successful, so use time() and clock() instead
seed( hash( time(NULL), clock() ) );
}
inline MTRand::MTRand( const uint32 oneSeed )
{ seed(oneSeed); }
inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )
{ seed(bigSeed,seedLength); }
inline MTRand::MTRand()
{ seed(); }
inline MTRand::MTRand( const MTRand& o )
{
const uint32 *t = o.state;
uint32 *s = state;
int i = N;
for( ; i--; *s++ = *t++ ) {}
left = o.left;
pNext = &state[N-left];
}
inline MTRand::uint32 MTRand::randInt()
{
// Pull a 32-bit integer from the generator state
// Every other access function simply transforms the numbers extracted here
if( left == 0 ) reload();
--left;
uint32 s1;
s1 = *pNext++;
s1 ^= (s1 >> 11);
s1 ^= (s1 << 7) & 0x9d2c5680UL;
s1 ^= (s1 << 15) & 0xefc60000UL;
return ( s1 ^ (s1 >> 18) );
}
inline MTRand::uint32 MTRand::randInt( const uint32 n )
{
// Find which bits are used in n
// Optimized by Magnus Jonsson (magnus@smartelectronix.com)
uint32 used = n;
used |= used >> 1;
used |= used >> 2;
used |= used >> 4;
used |= used >> 8;
used |= used >> 16;
// Draw numbers until one is found in [0,n]
uint32 i;
do
i = randInt() & used; // toss unused bits to shorten search
while( i > n );
return i;
}
inline double MTRand::rand()
{ return double(randInt()) * (1.0/4294967295.0); }
inline double MTRand::rand( const double n )
{ return rand() * n; }
inline double MTRand::randExc()
{ return double(randInt()) * (1.0/4294967296.0); }
inline double MTRand::randExc( const double n )
{ return randExc() * n; }
inline double MTRand::randDblExc()
{ return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }
inline double MTRand::randDblExc( const double n )
{ return randDblExc() * n; }
inline double MTRand::rand53()
{
uint32 a = randInt() >> 5, b = randInt() >> 6;
return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada
}
inline double MTRand::randNorm( const double mean, const double stddev )
{
// Return a real number from a normal (Gaussian) distribution with given
// mean and standard deviation by polar form of Box-Muller transformation
double x, y, r;
do
{
x = 2.0 * rand() - 1.0;
y = 2.0 * rand() - 1.0;
r = x * x + y * y;
}
while ( r >= 1.0 || r == 0.0 );
double s = sqrt( -2.0 * log(r) / r );
return mean + x * s * stddev;
}
inline double MTRand::operator()()
{
return rand();
}
inline void MTRand::save( uint32* saveArray ) const
{
const uint32 *s = state;
uint32 *sa = saveArray;
int i = N;
for( ; i--; *sa++ = *s++ ) {}
*sa = left;
}
inline void MTRand::load( uint32 *const loadArray )
{
uint32 *s = state;
uint32 *la = loadArray;
int i = N;
for( ; i--; *s++ = *la++ ) {}
left = *la;
pNext = &state[N-left];
}
inline std::ostream& operator<<( std::ostream& os, const MTRand& mtrand )
{
const MTRand::uint32 *s = mtrand.state;
int i = mtrand.N;
for( ; i--; os << *s++ << "\t" ) {}
return os << mtrand.left;
}
inline std::istream& operator>>( std::istream& is, MTRand& mtrand )
{
MTRand::uint32 *s = mtrand.state;
int i = mtrand.N;
for( ; i--; is >> *s++ ) {}
is >> mtrand.left;
mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left];
return is;
}
inline MTRand& MTRand::operator=( const MTRand& o )
{
if( this == &o ) return (*this);
const uint32 *t = o.state;
uint32 *s = state;
int i = N;
for( ; i--; *s++ = *t++ ) {}
left = o.left;
pNext = &state[N-left];
return (*this);
}
#endif // MERSENNETWISTER_H
// Change log:
//
// v0.1 - First release on 15 May 2000
// - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// - Translated from C to C++
// - Made completely ANSI compliant
// - Designed convenient interface for initialization, seeding, and
// obtaining numbers in default or user-defined ranges
// - Added automatic seeding from /dev/urandom or time() and clock()
// - Provided functions for saving and loading generator state
//
// v0.2 - Fixed bug which reloaded generator one step too late
//
// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
//
// v0.4 - Removed trailing newline in saved generator format to be consistent
// with output format of built-in types
//
// v0.5 - Improved portability by replacing static const int's with enum's and
// clarifying return values in seed(); suggested by Eric Heimburg
// - Removed MAXINT constant; use 0xffffffffUL instead
//
// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
// - Changed integer [0,n] generator to give better uniformity
//
// v0.7 - Fixed operator precedence ambiguity in reload()
// - Added access for real numbers in (0,1) and (0,n)
//
// v0.8 - Included time.h header to properly support time_t and clock_t
//
// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
// - Allowed for seeding with arrays of any length
// - Added access for real numbers in [0,1) with 53-bit resolution
// - Added access for real numbers from normal (Gaussian) distributions
// - Increased overall speed by optimizing twist()
// - Doubled speed of integer [0,n] generation
// - Fixed out-of-range number generation on 64-bit machines
// - Improved portability by substituting literal constants for long enum's
// - Changed license from GNU LGPL to BSD
//
// v1.1 - Corrected parameter label in randNorm from "variance" to "stddev"
// - Changed randNorm algorithm from basic to polar form for efficiency
// - Updated includes from deprecated <xxxx.h> to standard <cxxxx> forms
// - Cleaned declarations and definitions to please Intel compiler
// - Revised twist() operator to work on ones'-complement machines
// - Fixed reload() function to work when N and M are unsigned
// - Added copy constructor and copy operator from Salvador Espana

View File

@ -9,7 +9,6 @@
#include "../Entities/Player.h"
#include "../Entities/ExpOrb.h"
#include "../MonsterConfig.h"
#include "../MersenneTwister.h"
#include "../Chunk.h"
#include "../FastRandom.h"

View File

@ -2,6 +2,7 @@
#include "Globals.h" // NOTE: MSVC stupidness requires this to be the same across all modules
#include "Witch.h"
#include "FastRandom.h"

View File

@ -2,7 +2,6 @@
#pragma once
#include "AggressiveMonster.h"
#include "../MersenneTwister.h"

View File

@ -5,7 +5,7 @@
#include "Globals.h"
#include "ProbabDistrib.h"
#include "MersenneTwister.h"
#include "FastRandom.h"

View File

@ -68,24 +68,24 @@ cRoot::~cRoot()
void cRoot::InputThread(cRoot * a_Params)
void cRoot::InputThread(cRoot & a_Params)
{
cLogCommandOutputCallback Output;
while (!a_Params->m_bStop && !a_Params->m_bRestart && !m_TerminateEventRaised && std::cin.good())
while (!a_Params.m_bStop && !a_Params.m_bRestart && !m_TerminateEventRaised && std::cin.good())
{
AString Command;
std::getline(std::cin, Command);
if (!Command.empty())
{
a_Params->ExecuteConsoleCommand(TrimString(Command), Output);
a_Params.ExecuteConsoleCommand(TrimString(Command), Output);
}
}
if (m_TerminateEventRaised || !std::cin.good())
{
// We have come here because the std::cin has received an EOF / a terminate signal has been sent, and the server is still running; stop the server:
a_Params->m_bStop = true;
a_Params.m_bStop = true;
}
}
@ -191,7 +191,8 @@ void cRoot::Start(void)
LOGD("Starting InputThread...");
try
{
m_InputThread = std::thread(InputThread, this);
m_InputThread = std::thread(InputThread, std::ref(*this));
m_InputThread.detach();
}
catch (std::system_error & a_Exception)
{
@ -217,17 +218,6 @@ void cRoot::Start(void)
m_bStop = true;
}
#if !defined(ANDROID_NDK)
try
{
m_InputThread.join();
}
catch (std::system_error & a_Exception)
{
LOGERROR("ERROR: Could not wait for input thread to finish, error = %s!", a_Exception.code(), a_Exception.what());
}
#endif
// Stop the server:
m_WebAdmin->Stop();
LOG("Shutting down server...");

View File

@ -210,7 +210,7 @@ private:
static cRoot* s_Root;
static void InputThread(cRoot * a_Params);
static void InputThread(cRoot & a_Params);
}; // tolua_export

View File

@ -20,8 +20,6 @@
#include "Protocol/ProtocolRecognizer.h"
#include "CommandOutput.h"
#include "MersenneTwister.h"
#include "inifile/iniFile.h"
#include "Vector3.h"

View File

@ -45,7 +45,6 @@
#include "MobCensus.h"
#include "MobSpawner.h"
#include "MersenneTwister.h"
#include "Generating/Trees.h"
#include "Bindings/PluginManager.h"
#include "Blocks/BlockHandler.h"

View File

@ -10,7 +10,6 @@
#define MAX_PLAYERS 65535
#include "Simulator/SimulatorManager.h"
#include "MersenneTwister.h"
#include "ChunkMap.h"
#include "WorldStorage/WorldStorage.h"
#include "Generating/ChunkGenerator.h"
@ -26,6 +25,7 @@
#include "MapManager.h"
#include "Blocks/WorldInterface.h"
#include "Blocks/BroadcastInterface.h"
#include "FastRandom.h"