1
0

Noise: removed the unused SSE branches and unused interpolation methods. Removed the Noise.inc file.

git-svn-id: http://mc-server.googlecode.com/svn/trunk@1391 0a769ca7-a7f5-676a-18bf-c427514a06d6
This commit is contained in:
madmaxoft@gmail.com 2013-04-17 20:57:05 +00:00
parent 0d0df94eb8
commit a4be800a91
5 changed files with 249 additions and 482 deletions

View File

@ -43,7 +43,7 @@ clock_t TestCubicNoise(void)
clock_t Begin = clock(); clock_t Begin = clock();
for (int i = 0; i < 1000; i++) for (int i = 0; i < 1000; i++)
{ {
Cubic.Generate2D(Values, 256, 256, 0, 25.6, 0, 25.6); Cubic.Generate2D(Values, 256, 256, 0, (NOISE_DATATYPE)25.6, 0, (NOISE_DATATYPE)25.6);
} }
clock_t Ticks = clock() - Begin; clock_t Ticks = clock() - Begin;
LOG("cCubicNoise generating 1000 * 256x256 values took %d ticks (%.02f sec)", Ticks, (double)Ticks / CLOCKS_PER_SEC); LOG("cCubicNoise generating 1000 * 256x256 values took %d ticks (%.02f sec)", Ticks, (double)Ticks / CLOCKS_PER_SEC);
@ -96,5 +96,6 @@ int main(int argc, char * argv[])
clock_t NewTicks = TestCubicNoise(); clock_t NewTicks = TestCubicNoise();
clock_t OldTicks = TestOldNoise(); clock_t OldTicks = TestOldNoise();
LOG("New method is %.02fx faster", (double)OldTicks / NewTicks); LOG("New method is %.02fx faster", (double)OldTicks / NewTicks);
LOG("Press Enter to quit program");
getchar(); getchar();
} }

View File

@ -572,10 +572,6 @@
RelativePath="..\source\Noise.h" RelativePath="..\source\Noise.h"
> >
</File> </File>
<File
RelativePath="..\source\Noise.inc"
>
</File>
<File <File
RelativePath="..\source\Piston.cpp" RelativePath="..\source\Piston.cpp"
> >

View File

@ -17,20 +17,59 @@
NOISE_DATATYPE CubicInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_C, NOISE_DATATYPE a_D, NOISE_DATATYPE a_Pct) ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
{ // Globals:
NOISE_DATATYPE P = (a_D - a_C) - (a_A - a_B);
NOISE_DATATYPE Q = (a_A - a_B) - P;
NOISE_DATATYPE R = a_C - a_A;
NOISE_DATATYPE S = a_B;
return ((P * a_Pct + Q) * a_Pct + R) * a_Pct + S; void IntArrayLinearInterpolate2D(
int * a_Array,
int a_SizeX, int a_SizeY, // Dimensions of the array
int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction
)
{
// First interpolate columns where the anchor points are:
int LastYCell = a_SizeY - a_AnchorStepY;
for (int y = 0; y < LastYCell; y += a_AnchorStepY)
{
int Idx = a_SizeX * y;
for (int x = 0; x < a_SizeX; x += a_AnchorStepX)
{
int StartValue = a_Array[Idx];
int EndValue = a_Array[Idx + a_SizeX * a_AnchorStepY];
int Diff = EndValue - StartValue;
for (int CellY = 1; CellY < a_AnchorStepY; CellY++)
{
a_Array[Idx + a_SizeX * CellY] = StartValue + CellY * Diff / a_AnchorStepY;
} // for CellY
Idx += a_AnchorStepX;
} // for x
} // for y
// Now interpolate in rows, each row has values in the anchor columns
int LastXCell = a_SizeX - a_AnchorStepX;
for (int y = 0; y < a_SizeY; y++)
{
int Idx = a_SizeX * y;
for (int x = 0; x < LastXCell; x += a_AnchorStepX)
{
int StartValue = a_Array[Idx];
int EndValue = a_Array[Idx + a_AnchorStepX];
int Diff = EndValue - StartValue;
for (int CellX = 1; CellX < a_AnchorStepX; CellX++)
{
a_Array[Idx + CellX] = StartValue + CellX * Diff / a_AnchorStepX;
} // for CellY
Idx += a_AnchorStepX;
}
}
} }
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cCubicCell2D:
class cCubicCell2D class cCubicCell2D
{ {
public: public:
@ -105,14 +144,14 @@ void cCubicCell2D::Generate(
{ {
NOISE_DATATYPE Interp[4]; NOISE_DATATYPE Interp[4];
NOISE_DATATYPE FracY = m_FracY[y]; NOISE_DATATYPE FracY = m_FracY[y];
Interp[0] = CubicInterpolate((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], (*m_WorkRnds)[0][2], (*m_WorkRnds)[0][3], FracY); Interp[0] = cNoise::CubicInterpolate((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], (*m_WorkRnds)[0][2], (*m_WorkRnds)[0][3], FracY);
Interp[1] = CubicInterpolate((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], (*m_WorkRnds)[1][2], (*m_WorkRnds)[1][3], FracY); Interp[1] = cNoise::CubicInterpolate((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], (*m_WorkRnds)[1][2], (*m_WorkRnds)[1][3], FracY);
Interp[2] = CubicInterpolate((*m_WorkRnds)[2][0], (*m_WorkRnds)[2][1], (*m_WorkRnds)[2][2], (*m_WorkRnds)[2][3], FracY); Interp[2] = cNoise::CubicInterpolate((*m_WorkRnds)[2][0], (*m_WorkRnds)[2][1], (*m_WorkRnds)[2][2], (*m_WorkRnds)[2][3], FracY);
Interp[3] = CubicInterpolate((*m_WorkRnds)[3][0], (*m_WorkRnds)[3][1], (*m_WorkRnds)[3][2], (*m_WorkRnds)[3][3], FracY); Interp[3] = cNoise::CubicInterpolate((*m_WorkRnds)[3][0], (*m_WorkRnds)[3][1], (*m_WorkRnds)[3][2], (*m_WorkRnds)[3][3], FracY);
int idx = y * m_SizeX + a_FromX; int idx = y * m_SizeX + a_FromX;
for (int x = a_FromX; x < a_ToX; x++) for (int x = a_FromX; x < a_ToX; x++)
{ {
m_Array[idx++] = CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]); m_Array[idx++] = cNoise::CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]);
} // for x } // for x
} // for y } // for y
} }
@ -189,291 +228,138 @@ cNoise::cNoise(unsigned int a_Seed) :
#if NOISE_USE_SSE NOISE_DATATYPE cNoise::LinearNoise1D(NOISE_DATATYPE a_X) const
/****************
* SSE Random value generator
**/
__m128 cNoise::SSE_IntNoise2D( int a_X1, int a_Y1, int a_X2, int a_Y2, int a_X3, int a_Y3, int a_X4, int a_Y4 ) const
{ {
const __m128i X4 = _mm_set_epi32(a_X4, a_X3, a_X2, a_X1); int BaseX = FAST_FLOOR(a_X);
const __m128i Y4 = _mm_set_epi32(a_Y4, a_Y3, a_Y2, a_Y1); NOISE_DATATYPE FracX = a_X - BaseX;
return LinearInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX);
const __m128 One4 = _mm_set_ps1( 1.f );
const __m128i YScale4 = _mm_set1_epi32( 57 );
const __m128i i15731 = _mm_set1_epi32( 15731 );
const __m128i i789221 = _mm_set1_epi32( 789221 );
const __m128i i1376312589 = _mm_set1_epi32(1376312589);
const __m128i MaskValue4 = _mm_set1_epi32(0x7fffffff);
const __m128 f1073741824 = _mm_set_ps1( 1073741824.0f );
const __m128i Seed4 = _mm_mullo_epi32( _mm_mullo_epi32( _mm_set1_epi32( m_Seed ), YScale4 ), YScale4 );
const __m128i ScaledY4 = _mm_mullo_epi32( Y4, YScale4 );
const __m128i n4 = _mm_add_epi32( _mm_add_epi32( X4, ScaledY4 ), Seed4 );
const __m128i nn4 = _mm_slli_epi32( n4, 13 );
const __m128i nnn4 = _mm_xor_si128( nn4, n4 );
const __m128i StepA4 = _mm_mullo_epi32( nnn4, nnn4 );
const __m128i StepAA4 = _mm_add_epi32( _mm_mullo_epi32( StepA4, i15731 ), i789221 );
const __m128i StepB4 = _mm_add_epi32( _mm_mullo_epi32( nnn4, StepAA4 ), i1376312589 );
const __m128i StepC4 = _mm_and_si128( StepB4, MaskValue4 );
const __m128 StepD4 = _mm_div_ps( _mm_cvtepi32_ps( StepC4 ), f1073741824 );
const __m128 Result4 = _mm_sub_ps( One4, StepD4 );
return Result4;
}
#endif
/***************
* Interpolated (and 1 smoothed) noise in 1-dimension
**/
float cNoise::LinearNoise1D( float a_X ) const
{
int BaseX = FAST_FLOOR( a_X );
float FracX = (a_X) - BaseX;
return LinearInterpolate( IntNoise( BaseX ), IntNoise( BaseX+1 ), FracX);
} }
float cNoise::CosineNoise1D( float a_X ) const NOISE_DATATYPE cNoise::CosineNoise1D(NOISE_DATATYPE a_X) const
{ {
int BaseX = FAST_FLOOR( a_X ); int BaseX = FAST_FLOOR(a_X);
float FracX = (a_X) - BaseX; NOISE_DATATYPE FracX = a_X - BaseX;
return CosineInterpolate( IntNoise( BaseX ), IntNoise( BaseX+1 ), FracX); return CosineInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX);
} }
float cNoise::CubicNoise1D( float a_X ) const NOISE_DATATYPE cNoise::CubicNoise1D(NOISE_DATATYPE a_X) const
{ {
int BaseX = FAST_FLOOR( a_X ); int BaseX = FAST_FLOOR(a_X);
float FracX = (a_X) - BaseX; NOISE_DATATYPE FracX = a_X - BaseX;
return CubicInterpolate( IntNoise( BaseX-1 ), IntNoise( BaseX ), IntNoise( BaseX+1 ), IntNoise( BaseX+2 ), FracX); return CubicInterpolate(IntNoise1D(BaseX - 1), IntNoise1D(BaseX), IntNoise1D(BaseX + 1), IntNoise1D(BaseX + 2), FracX);
} }
float cNoise::SmoothNoise1D( int a_X ) const NOISE_DATATYPE cNoise::SmoothNoise1D(int a_X) const
{ {
return IntNoise(a_X)/2 + IntNoise(a_X-1)/4 + IntNoise(a_X+1)/4; return IntNoise1D(a_X) / 2 + IntNoise1D(a_X - 1) / 4 + IntNoise1D(a_X + 1) / 4;
} }
/****************** NOISE_DATATYPE cNoise::CubicNoise2D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y) const
* Interpolated (and 1 smoothed) noise in 2-dimensions
**/
float cNoise::LinearNoise2D( float a_X, float a_Y ) const
{ {
const int BaseX = FAST_FLOOR( a_X ); const int BaseX = FAST_FLOOR(a_X);
const int BaseY = FAST_FLOOR( a_Y ); const int BaseY = FAST_FLOOR(a_Y);
const float tl = IntNoise2D( BaseX, BaseY ); const NOISE_DATATYPE points[4][4] =
const float tr = IntNoise2D( BaseX+1, BaseY );
const float bl = IntNoise2D( BaseX, BaseY+1 );
const float br = IntNoise2D( BaseX+1, BaseY+1 );
const float FracX = (a_X) - BaseX;
const float interp1 = LinearInterpolate( tl, tr, FracX );
const float interp2 = LinearInterpolate( bl, br, FracX );
const float FracY = (a_Y) - BaseY;
return LinearInterpolate( interp1, interp2, FracY );
}
float cNoise::CosineNoise2D( float a_X, float a_Y ) const
{
const int BaseX = FAST_FLOOR( a_X );
const int BaseY = FAST_FLOOR( a_Y );
const float tl = IntNoise2D( BaseX, BaseY );
const float tr = IntNoise2D( BaseX+1, BaseY );
const float bl = IntNoise2D( BaseX, BaseY+1 );
const float br = IntNoise2D( BaseX+1, BaseY+1 );
const float FracX = (a_X) - BaseX;
const float interp1 = CosineInterpolate( tl, tr, FracX );
const float interp2 = CosineInterpolate( bl, br, FracX );
const float FracY = (a_Y) - BaseY;
return CosineInterpolate( interp1, interp2, FracY );
}
float cNoise::CubicNoise2D( float a_X, float a_Y ) const
{
const int BaseX = FAST_FLOOR( a_X );
const int BaseY = FAST_FLOOR( a_Y );
const float points[4][4] =
{ {
IntNoise2D( BaseX-1, BaseY-1 ), IntNoise2D( BaseX, BaseY-1 ), IntNoise2D( BaseX+1, BaseY-1 ), IntNoise2D( BaseX+2, BaseY-1 ), IntNoise2D(BaseX - 1, BaseY - 1), IntNoise2D(BaseX, BaseY - 1), IntNoise2D(BaseX + 1, BaseY - 1), IntNoise2D(BaseX + 2, BaseY - 1),
IntNoise2D( BaseX-1, BaseY ), IntNoise2D( BaseX, BaseY ), IntNoise2D( BaseX+1, BaseY ), IntNoise2D( BaseX+2, BaseY ), IntNoise2D(BaseX - 1, BaseY), IntNoise2D(BaseX, BaseY), IntNoise2D(BaseX + 1, BaseY), IntNoise2D(BaseX + 2, BaseY),
IntNoise2D( BaseX-1, BaseY+1 ), IntNoise2D( BaseX, BaseY+1 ), IntNoise2D( BaseX+1, BaseY+1 ), IntNoise2D( BaseX+2, BaseY+1 ), IntNoise2D(BaseX - 1, BaseY + 1), IntNoise2D(BaseX, BaseY + 1), IntNoise2D(BaseX + 1, BaseY + 1), IntNoise2D(BaseX + 2, BaseY + 1),
IntNoise2D( BaseX-1, BaseY+2 ), IntNoise2D( BaseX, BaseY+2 ), IntNoise2D( BaseX+1, BaseY+2 ), IntNoise2D( BaseX+2, BaseY+2 ), IntNoise2D(BaseX - 1, BaseY + 2), IntNoise2D(BaseX, BaseY + 2), IntNoise2D(BaseX + 1, BaseY + 2), IntNoise2D(BaseX + 2, BaseY + 2),
}; };
const float FracX = (a_X) - BaseX; const NOISE_DATATYPE FracX = a_X - BaseX;
const float interp1 = CubicInterpolate( points[0][0], points[0][1], points[0][2], points[0][3], FracX ); const NOISE_DATATYPE interp1 = CubicInterpolate(points[0][0], points[0][1], points[0][2], points[0][3], FracX);
const float interp2 = CubicInterpolate( points[1][0], points[1][1], points[1][2], points[1][3], FracX ); const NOISE_DATATYPE interp2 = CubicInterpolate(points[1][0], points[1][1], points[1][2], points[1][3], FracX);
const float interp3 = CubicInterpolate( points[2][0], points[2][1], points[2][2], points[2][3], FracX ); const NOISE_DATATYPE interp3 = CubicInterpolate(points[2][0], points[2][1], points[2][2], points[2][3], FracX);
const float interp4 = CubicInterpolate( points[3][0], points[3][1], points[3][2], points[3][3], FracX ); const NOISE_DATATYPE interp4 = CubicInterpolate(points[3][0], points[3][1], points[3][2], points[3][3], FracX);
const float FracY = (a_Y) - BaseY; const NOISE_DATATYPE FracY = a_Y - BaseY;
return CubicInterpolate( interp1, interp2, interp3, interp4, FracY ); return CubicInterpolate(interp1, interp2, interp3, interp4, FracY);
} }
#if NOISE_USE_SSE NOISE_DATATYPE cNoise::CubicNoise3D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z) const
float cNoise::SSE_CubicNoise2D( float a_X, float a_Y ) const
{ {
const int BaseX = FAST_FLOOR( a_X ); const int BaseX = FAST_FLOOR(a_X);
const int BaseY = FAST_FLOOR( a_Y ); const int BaseY = FAST_FLOOR(a_Y);
const int BaseZ = FAST_FLOOR(a_Z);
__m128 points4[4] = { const NOISE_DATATYPE points1[4][4] = {
SSE_IntNoise2D( BaseX-1, BaseY-1, BaseX-1, BaseY, BaseX-1, BaseY+1, BaseX-1, BaseY+2 ), IntNoise3D(BaseX - 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ - 1),
SSE_IntNoise2D( BaseX, BaseY-1, BaseX, BaseY, BaseX, BaseY+1, BaseX, BaseY+2 ), IntNoise3D(BaseX - 1, BaseY, BaseZ - 1), IntNoise3D(BaseX, BaseY, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY, BaseZ - 1),
SSE_IntNoise2D( BaseX+1, BaseY-1, BaseX+1, BaseY, BaseX+1, BaseY+1, BaseX+1, BaseY+2 ), IntNoise3D(BaseX - 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ - 1),
SSE_IntNoise2D( BaseX+2, BaseY-1, BaseX+2, BaseY, BaseX+2, BaseY+1, BaseX+2, BaseY+2 ), IntNoise3D(BaseX - 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ - 1),
}; };
const float FracX = (a_X) - BaseX; const NOISE_DATATYPE FracX = (a_X) - BaseX;
union { __m128 p4; float p[4]; } const NOISE_DATATYPE x1interp1 = CubicInterpolate( points1[0][0], points1[0][1], points1[0][2], points1[0][3], FracX );
AllInterp = { CubicInterpolate4( points4[0], points4[1], points4[2], points4[3], FracX ) }; const NOISE_DATATYPE x1interp2 = CubicInterpolate( points1[1][0], points1[1][1], points1[1][2], points1[1][3], FracX );
const NOISE_DATATYPE x1interp3 = CubicInterpolate( points1[2][0], points1[2][1], points1[2][2], points1[2][3], FracX );
const NOISE_DATATYPE x1interp4 = CubicInterpolate( points1[3][0], points1[3][1], points1[3][2], points1[3][3], FracX );
const float FracY = (a_Y) - BaseY; const NOISE_DATATYPE points2[4][4] = {
return CubicInterpolate( AllInterp.p[0], AllInterp.p[1], AllInterp.p[2], AllInterp.p[3], FracY );
}
#endif
/******************
* Interpolated (and 1 smoothed) noise in 3-dimensions
**/
float cNoise::CosineNoise3D( float a_X, float a_Y, float a_Z ) const
{
const int BaseX = FAST_FLOOR( a_X );
const int BaseY = FAST_FLOOR( a_Y );
const int BaseZ = FAST_FLOOR( a_Z );
const float ftl = IntNoise3D( BaseX, BaseY, BaseZ );
const float ftr = IntNoise3D( BaseX+1, BaseY, BaseZ );
const float fbl = IntNoise3D( BaseX, BaseY+1, BaseZ );
const float fbr = IntNoise3D( BaseX+1, BaseY+1, BaseZ );
const float btl = IntNoise3D( BaseX, BaseY, BaseZ+1 );
const float btr = IntNoise3D( BaseX+1, BaseY, BaseZ+1 );
const float bbl = IntNoise3D( BaseX, BaseY+1, BaseZ+1 );
const float bbr = IntNoise3D( BaseX+1, BaseY+1, BaseZ+1 );
const float FracX = (a_X) - BaseX;
const float finterp1 = CosineInterpolate( ftl, ftr, FracX );
const float finterp2 = CosineInterpolate( fbl, fbr, FracX );
const float binterp1 = CosineInterpolate( btl, btr, FracX );
const float binterp2 = CosineInterpolate( bbl, bbr, FracX );
const float FracY = (a_Y) - BaseY;
const float interp1 = CosineInterpolate( finterp1, finterp2, FracY );
const float interp2 = CosineInterpolate( binterp1, binterp2, FracY );
const float FracZ = (a_Z) - BaseZ;
return CosineInterpolate( interp1, interp2, FracZ );
}
float cNoise::CubicNoise3D( float a_X, float a_Y, float a_Z ) const
{
const int BaseX = FAST_FLOOR( a_X );
const int BaseY = FAST_FLOOR( a_Y );
const int BaseZ = FAST_FLOOR( a_Z );
const float points1[4][4] = {
IntNoise3D( BaseX-1, BaseY-1, BaseZ-1 ), IntNoise3D( BaseX, BaseY-1, BaseZ-1 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ-1 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ-1 ),
IntNoise3D( BaseX-1, BaseY, BaseZ-1 ), IntNoise3D( BaseX, BaseY, BaseZ-1 ), IntNoise3D( BaseX+1, BaseY, BaseZ-1 ), IntNoise3D( BaseX+2, BaseY, BaseZ-1 ),
IntNoise3D( BaseX-1, BaseY+1, BaseZ-1 ), IntNoise3D( BaseX, BaseY+1, BaseZ-1 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ-1 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ-1 ),
IntNoise3D( BaseX-1, BaseY+2, BaseZ-1 ), IntNoise3D( BaseX, BaseY+2, BaseZ-1 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ-1 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ-1 ),
};
const float FracX = (a_X) - BaseX;
const float x1interp1 = CubicInterpolate( points1[0][0], points1[0][1], points1[0][2], points1[0][3], FracX );
const float x1interp2 = CubicInterpolate( points1[1][0], points1[1][1], points1[1][2], points1[1][3], FracX );
const float x1interp3 = CubicInterpolate( points1[2][0], points1[2][1], points1[2][2], points1[2][3], FracX );
const float x1interp4 = CubicInterpolate( points1[3][0], points1[3][1], points1[3][2], points1[3][3], FracX );
const float points2[4][4] = {
IntNoise3D( BaseX-1, BaseY-1, BaseZ ), IntNoise3D( BaseX, BaseY-1, BaseZ ), IntNoise3D( BaseX+1, BaseY-1, BaseZ ), IntNoise3D( BaseX+2, BaseY-1, BaseZ ), IntNoise3D( BaseX-1, BaseY-1, BaseZ ), IntNoise3D( BaseX, BaseY-1, BaseZ ), IntNoise3D( BaseX+1, BaseY-1, BaseZ ), IntNoise3D( BaseX+2, BaseY-1, BaseZ ),
IntNoise3D( BaseX-1, BaseY, BaseZ ), IntNoise3D( BaseX, BaseY, BaseZ ), IntNoise3D( BaseX+1, BaseY, BaseZ ), IntNoise3D( BaseX+2, BaseY, BaseZ ), IntNoise3D( BaseX-1, BaseY, BaseZ ), IntNoise3D( BaseX, BaseY, BaseZ ), IntNoise3D( BaseX+1, BaseY, BaseZ ), IntNoise3D( BaseX+2, BaseY, BaseZ ),
IntNoise3D( BaseX-1, BaseY+1, BaseZ ), IntNoise3D( BaseX, BaseY+1, BaseZ ), IntNoise3D( BaseX+1, BaseY+1, BaseZ ), IntNoise3D( BaseX+2, BaseY+1, BaseZ ), IntNoise3D( BaseX-1, BaseY+1, BaseZ ), IntNoise3D( BaseX, BaseY+1, BaseZ ), IntNoise3D( BaseX+1, BaseY+1, BaseZ ), IntNoise3D( BaseX+2, BaseY+1, BaseZ ),
IntNoise3D( BaseX-1, BaseY+2, BaseZ ), IntNoise3D( BaseX, BaseY+2, BaseZ ), IntNoise3D( BaseX+1, BaseY+2, BaseZ ), IntNoise3D( BaseX+2, BaseY+2, BaseZ ), IntNoise3D( BaseX-1, BaseY+2, BaseZ ), IntNoise3D( BaseX, BaseY+2, BaseZ ), IntNoise3D( BaseX+1, BaseY+2, BaseZ ), IntNoise3D( BaseX+2, BaseY+2, BaseZ ),
}; };
const float x2interp1 = CubicInterpolate( points2[0][0], points2[0][1], points2[0][2], points2[0][3], FracX ); const NOISE_DATATYPE x2interp1 = CubicInterpolate( points2[0][0], points2[0][1], points2[0][2], points2[0][3], FracX );
const float x2interp2 = CubicInterpolate( points2[1][0], points2[1][1], points2[1][2], points2[1][3], FracX ); const NOISE_DATATYPE x2interp2 = CubicInterpolate( points2[1][0], points2[1][1], points2[1][2], points2[1][3], FracX );
const float x2interp3 = CubicInterpolate( points2[2][0], points2[2][1], points2[2][2], points2[2][3], FracX ); const NOISE_DATATYPE x2interp3 = CubicInterpolate( points2[2][0], points2[2][1], points2[2][2], points2[2][3], FracX );
const float x2interp4 = CubicInterpolate( points2[3][0], points2[3][1], points2[3][2], points2[3][3], FracX ); const NOISE_DATATYPE x2interp4 = CubicInterpolate( points2[3][0], points2[3][1], points2[3][2], points2[3][3], FracX );
const float points3[4][4] = { const NOISE_DATATYPE points3[4][4] = {
IntNoise3D( BaseX-1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+1 ),
IntNoise3D( BaseX-1, BaseY, BaseZ+1 ), IntNoise3D( BaseX, BaseY, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY, BaseZ+1 ), IntNoise3D( BaseX, BaseY, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY, BaseZ+1 ),
IntNoise3D( BaseX-1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+1 ),
IntNoise3D( BaseX-1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+1 ),
}; };
const float x3interp1 = CubicInterpolate( points3[0][0], points3[0][1], points3[0][2], points3[0][3], FracX ); const NOISE_DATATYPE x3interp1 = CubicInterpolate( points3[0][0], points3[0][1], points3[0][2], points3[0][3], FracX );
const float x3interp2 = CubicInterpolate( points3[1][0], points3[1][1], points3[1][2], points3[1][3], FracX ); const NOISE_DATATYPE x3interp2 = CubicInterpolate( points3[1][0], points3[1][1], points3[1][2], points3[1][3], FracX );
const float x3interp3 = CubicInterpolate( points3[2][0], points3[2][1], points3[2][2], points3[2][3], FracX ); const NOISE_DATATYPE x3interp3 = CubicInterpolate( points3[2][0], points3[2][1], points3[2][2], points3[2][3], FracX );
const float x3interp4 = CubicInterpolate( points3[3][0], points3[3][1], points3[3][2], points3[3][3], FracX ); const NOISE_DATATYPE x3interp4 = CubicInterpolate( points3[3][0], points3[3][1], points3[3][2], points3[3][3], FracX );
const float points4[4][4] = { const NOISE_DATATYPE points4[4][4] = {
IntNoise3D( BaseX-1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+2 ),
IntNoise3D( BaseX-1, BaseY, BaseZ+2 ), IntNoise3D( BaseX, BaseY, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY, BaseZ+2 ), IntNoise3D( BaseX, BaseY, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY, BaseZ+2 ),
IntNoise3D( BaseX-1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+2 ),
IntNoise3D( BaseX-1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+2 ),
}; };
const float x4interp1 = CubicInterpolate( points4[0][0], points4[0][1], points4[0][2], points4[0][3], FracX ); const NOISE_DATATYPE x4interp1 = CubicInterpolate( points4[0][0], points4[0][1], points4[0][2], points4[0][3], FracX );
const float x4interp2 = CubicInterpolate( points4[1][0], points4[1][1], points4[1][2], points4[1][3], FracX ); const NOISE_DATATYPE x4interp2 = CubicInterpolate( points4[1][0], points4[1][1], points4[1][2], points4[1][3], FracX );
const float x4interp3 = CubicInterpolate( points4[2][0], points4[2][1], points4[2][2], points4[2][3], FracX ); const NOISE_DATATYPE x4interp3 = CubicInterpolate( points4[2][0], points4[2][1], points4[2][2], points4[2][3], FracX );
const float x4interp4 = CubicInterpolate( points4[3][0], points4[3][1], points4[3][2], points4[3][3], FracX ); const NOISE_DATATYPE x4interp4 = CubicInterpolate( points4[3][0], points4[3][1], points4[3][2], points4[3][3], FracX );
const float FracY = (a_Y) - BaseY; const NOISE_DATATYPE FracY = (a_Y) - BaseY;
const float yinterp1 = CubicInterpolate( x1interp1, x1interp2, x1interp3, x1interp4, FracY ); const NOISE_DATATYPE yinterp1 = CubicInterpolate( x1interp1, x1interp2, x1interp3, x1interp4, FracY );
const float yinterp2 = CubicInterpolate( x2interp1, x2interp2, x2interp3, x2interp4, FracY ); const NOISE_DATATYPE yinterp2 = CubicInterpolate( x2interp1, x2interp2, x2interp3, x2interp4, FracY );
const float yinterp3 = CubicInterpolate( x3interp1, x3interp2, x3interp3, x3interp4, FracY ); const NOISE_DATATYPE yinterp3 = CubicInterpolate( x3interp1, x3interp2, x3interp3, x3interp4, FracY );
const float yinterp4 = CubicInterpolate( x4interp1, x4interp2, x4interp3, x4interp4, FracY ); const NOISE_DATATYPE yinterp4 = CubicInterpolate( x4interp1, x4interp2, x4interp3, x4interp4, FracY );
const float FracZ = (a_Z) - BaseZ; const NOISE_DATATYPE FracZ = (a_Z) - BaseZ;
return CubicInterpolate( yinterp1, yinterp2, yinterp3, yinterp4, FracZ ); return CubicInterpolate( yinterp1, yinterp2, yinterp3, yinterp4, FracZ );
} }
@ -481,84 +367,6 @@ float cNoise::CubicNoise3D( float a_X, float a_Y, float a_Z ) const
/******************
* Private
**/
#if NOISE_USE_SSE
__m128 cNoise::CubicInterpolate4( const __m128 & a_A, const __m128 & a_B, const __m128 & a_C, const __m128 & a_D, float a_Pct ) const
{
const __m128 P = _mm_sub_ps( _mm_sub_ps( a_D, a_C ), _mm_sub_ps( a_A, a_B ) );
const __m128 Q = _mm_sub_ps( _mm_sub_ps( a_A, a_B ), P );
const __m128 R = _mm_sub_ps( a_C, a_A );
const __m128 Pct = _mm_set_ps1( a_Pct );
const __m128 Pct2 = _mm_mul_ps( Pct, Pct );
const __m128 Pct3 = _mm_mul_ps( Pct2, Pct );
return _mm_add_ps( _mm_add_ps( _mm_add_ps( _mm_mul_ps(P, Pct3), _mm_mul_ps( Q, Pct2 ) ), _mm_mul_ps( R, Pct ) ), a_B );
}
#endif
void IntArrayLinearInterpolate2D(
int * a_Array,
int a_SizeX, int a_SizeY, // Dimensions of the array
int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction
)
{
// First interpolate columns where the anchor points are:
int LastYCell = a_SizeY - a_AnchorStepY;
for (int y = 0; y < LastYCell; y += a_AnchorStepY)
{
int Idx = a_SizeX * y;
for (int x = 0; x < a_SizeX; x += a_AnchorStepX)
{
int StartValue = a_Array[Idx];
int EndValue = a_Array[Idx + a_SizeX * a_AnchorStepY];
int Diff = EndValue - StartValue;
for (int CellY = 1; CellY < a_AnchorStepY; CellY++)
{
a_Array[Idx + a_SizeX * CellY] = StartValue + CellY * Diff / a_AnchorStepY;
} // for CellY
Idx += a_AnchorStepX;
} // for x
} // for y
// Now interpolate in rows, each row has values in the anchor columns
int LastXCell = a_SizeX - a_AnchorStepX;
for (int y = 0; y < a_SizeY; y++)
{
int Idx = a_SizeX * y;
for (int x = 0; x < LastXCell; x += a_AnchorStepX)
{
int StartValue = a_Array[Idx];
int EndValue = a_Array[Idx + a_AnchorStepX];
int Diff = EndValue - StartValue;
for (int CellX = 1; CellX < a_AnchorStepX; CellX++)
{
a_Array[Idx + CellX] = StartValue + CellX * Diff / a_AnchorStepX;
} // for CellY
Idx += a_AnchorStepX;
}
}
}
#if NOISE_USE_INLINE
#include "Noise.inc"
#endif
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cCubicNoise: // cCubicNoise:

View File

@ -1,28 +1,21 @@
// Noise.h
// Declares the cNoise, cCubicNoise and cPerlinNoise classes for generating noise
#pragma once #pragma once
// Some settings // Some settings
#define NOISE_USE_INLINE 1
#define NOISE_USE_SSE 0
#define NOISE_DATATYPE float #define NOISE_DATATYPE float
// Do not touch #ifdef _MSC_VER
#if NOISE_USE_INLINE #define INLINE __forceinline
#ifdef _MSC_VER
#define __NOISE_INLINE__ __forceinline
#else
#define __NOISE_INLINE__ inline
#endif // _MSC_VER
#else #else
#define __NOISE_INLINE__ #define INLINE inline
#endif
#if NOISE_USE_SSE
#include <emmintrin.h>
#endif #endif
@ -32,48 +25,36 @@
class cNoise class cNoise
{ {
public: public:
cNoise( unsigned int a_Seed ); cNoise(unsigned int a_Seed);
#if NOISE_USE_SSE // The following functions, if not marked INLINE, are about 20 % slower
__m128 SSE_IntNoise2D( int a_X1, int a_Y1, int a_X2, int a_Y2, int a_X3, int a_Y3, int a_X4, int a_Y4 ) const; INLINE NOISE_DATATYPE IntNoise1D(int a_X) const;
#endif INLINE NOISE_DATATYPE IntNoise2D(int a_X, int a_Y) const;
INLINE NOISE_DATATYPE IntNoise3D(int a_X, int a_Y, int a_Z) const;
__NOISE_INLINE__ float IntNoise( int a_X ) const;
__NOISE_INLINE__ float IntNoise2D( int a_X, int a_Y ) const;
__NOISE_INLINE__ float IntNoise3D( int a_X, int a_Y, int a_Z ) const;
// Note: These functions have a mod8-irregular chance - each of the mod8 remainders has different chance of occurrence. Divide by 8 to rectify. // Note: These functions have a mod8-irregular chance - each of the mod8 remainders has different chance of occurrence. Divide by 8 to rectify.
__NOISE_INLINE__ int IntNoise1DInt( int a_X ) const; INLINE int IntNoise1DInt(int a_X) const;
__NOISE_INLINE__ int IntNoise2DInt( int a_X, int a_Y ) const; INLINE int IntNoise2DInt(int a_X, int a_Y) const;
__NOISE_INLINE__ int IntNoise3DInt( int a_X, int a_Y, int a_Z ) const; INLINE int IntNoise3DInt(int a_X, int a_Y, int a_Z) const;
float LinearNoise1D( float a_X ) const; NOISE_DATATYPE LinearNoise1D(NOISE_DATATYPE a_X) const;
float CosineNoise1D( float a_X ) const; NOISE_DATATYPE CosineNoise1D(NOISE_DATATYPE a_X) const;
float CubicNoise1D( float a_X ) const; NOISE_DATATYPE CubicNoise1D (NOISE_DATATYPE a_X) const;
float SmoothNoise1D( int a_X ) const; NOISE_DATATYPE SmoothNoise1D(int a_X) const;
float LinearNoise2D( float a_X, float a_Y ) const; NOISE_DATATYPE CubicNoise2D (NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y) const;
float CosineNoise2D( float a_X, float a_Y ) const;
float CubicNoise2D( float a_X, float a_Y ) const;
float SSE_CubicNoise2D( float a_X, float a_Y ) const;
float CosineNoise3D( float a_X, float a_Y, float a_Z ) const; NOISE_DATATYPE CubicNoise3D (NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z) const;
float CubicNoise3D( float a_X, float a_Y, float a_Z ) const;
void SetSeed( unsigned int a_Seed ) { m_Seed = a_Seed; } void SetSeed(unsigned int a_Seed) { m_Seed = a_Seed; }
__NOISE_INLINE__ static float CubicInterpolate (float a_A, float a_B, float a_C, float a_D, float a_Pct); INLINE static NOISE_DATATYPE CubicInterpolate (NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_C, NOISE_DATATYPE a_D, NOISE_DATATYPE a_Pct);
__NOISE_INLINE__ static float CosineInterpolate(float a_A, float a_B, float a_Pct); INLINE static NOISE_DATATYPE CosineInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct);
__NOISE_INLINE__ static float LinearInterpolate(float a_A, float a_B, float a_Pct); INLINE static NOISE_DATATYPE LinearInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct);
private: private:
#if NOISE_USE_SSE
__m128 CubicInterpolate4( const __m128 & a_A, const __m128 & a_B, const __m128 & a_C, const __m128 & a_D, float a_Pct ) const;
#endif
unsigned int m_Seed; unsigned int m_Seed;
}; } ;
@ -241,3 +222,108 @@ public:
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Inline function definitions:
// These need to be in the header, otherwise linker error occur in MSVC
NOISE_DATATYPE cNoise::IntNoise1D(int a_X) const
{
int x = ((a_X * m_Seed) << 13) ^ a_X;
return (1 - (NOISE_DATATYPE)((x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824);
// returns a float number in the range of [-1, 1]
}
NOISE_DATATYPE cNoise::IntNoise2D(int a_X, int a_Y) const
{
int n = a_X + a_Y * 57 + m_Seed * 57 * 57;
n = (n << 13) ^ n;
return (1 - (NOISE_DATATYPE)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824);
// returns a float number in the range of [-1, 1]
}
NOISE_DATATYPE cNoise::IntNoise3D(int a_X, int a_Y, int a_Z) const
{
int n = a_X + a_Y * 57 + a_Z * 57 * 57 + m_Seed * 57 * 57 * 57;
n = (n << 13) ^ n;
return ((NOISE_DATATYPE)1 - (NOISE_DATATYPE)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0f);
// returns a float number in the range of [-1, 1]
}
int cNoise::IntNoise1DInt(int a_X) const
{
int x = ((a_X * m_Seed) << 13) ^ a_X;
return ((x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff);
}
int cNoise::IntNoise2DInt(int a_X, int a_Y) const
{
int n = a_X + a_Y * 57 + m_Seed * 57 * 57;
n = (n << 13) ^ n;
return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
}
int cNoise::IntNoise3DInt(int a_X, int a_Y, int a_Z) const
{
int n = a_X + a_Y * 57 + a_Z * 57 * 57 + m_Seed * 57 * 57 * 57;
n = (n << 13) ^ n;
return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
}
NOISE_DATATYPE cNoise::CubicInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_C, NOISE_DATATYPE a_D, NOISE_DATATYPE a_Pct)
{
NOISE_DATATYPE P = (a_D - a_C) - (a_A - a_B);
NOISE_DATATYPE Q = (a_A - a_B) - P;
NOISE_DATATYPE R = a_C - a_A;
NOISE_DATATYPE S = a_B;
return ((P * a_Pct + Q) * a_Pct + R) * a_Pct + S;
}
NOISE_DATATYPE cNoise::CosineInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct)
{
const NOISE_DATATYPE ft = a_Pct * (NOISE_DATATYPE)3.1415927;
const NOISE_DATATYPE f = (1 - cos(ft)) * (NOISE_DATATYPE)0.5;
return a_A * (1 - f) + a_B * f;
}
NOISE_DATATYPE cNoise::LinearInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct)
{
return a_A * (1 - a_Pct) + a_B * a_Pct;
}

View File

@ -1,124 +0,0 @@
#ifndef __C_NOISE_INC__
#define __C_NOISE_INC__
#include <math.h>
/****************
* Random value generator
**/
float cNoise::IntNoise( int a_X ) const
{
int x = ((a_X*m_Seed)<<13) ^ a_X;
return ( 1.0f - ( (x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0f);
// returns a float number in the range of [-1, 1]
}
float cNoise::IntNoise2D( int a_X, int a_Y ) const
{
int n = a_X + a_Y * 57 + m_Seed*57*57;
n = (n<<13) ^ n;
return ( 1.0f - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0f);
// returns a float number in the range of [-1, 1]
}
float cNoise::IntNoise3D( int a_X, int a_Y, int a_Z ) const
{
int n = a_X + a_Y * 57 + a_Z * 57*57 + m_Seed*57*57*57;
n = (n<<13) ^ n;
return ( 1.0f - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0f);
// returns a float number in the range of [-1, 1]
}
int cNoise::IntNoise1DInt( int a_X ) const
{
int x = ((a_X*m_Seed)<<13) ^ a_X;
return ( (x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff);
}
int cNoise::IntNoise2DInt( int a_X, int a_Y ) const
{
int n = a_X + a_Y * 57 + m_Seed*57*57;
n = (n<<13) ^ n;
return ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
}
int cNoise::IntNoise3DInt( int a_X, int a_Y, int a_Z ) const
{
int n = a_X + a_Y * 57 + a_Z * 57*57 + m_Seed*57*57*57;
n = (n<<13) ^ n;
return ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
}
/****************
* Interpolation functions
**/
float cNoise::CubicInterpolate( float a_A, float a_B, float a_C, float a_D, float a_Pct )
{
float P = (a_D - a_C) - (a_A - a_B);
float Q = (a_A - a_B) - P;
float R = a_C - a_A;
float S = a_B;
return ((P * a_Pct + Q) * a_Pct + R) * a_Pct + S;
}
float cNoise::CosineInterpolate( float a_A, float a_B, float a_Pct )
{
const float ft = a_Pct * 3.1415927f;
const float f = (1.f - cosf(ft)) * 0.5f;
return a_A*(1-f) + a_B*f;
}
float cNoise::LinearInterpolate( float a_A, float a_B, float a_Pct )
{
return a_A*(1.f-a_Pct) + a_B*a_Pct;
}
#endif