1
0

Merge pull request #1945 from Woazboat/CodeCleanup_refactored

Small code cleanup - clean version
This commit is contained in:
Mattes D 2015-05-08 21:52:41 +02:00
commit 9329c2c2cb
4 changed files with 88 additions and 43 deletions

View File

@ -103,7 +103,7 @@ void cSetChunkData::CalculateHeightMap(void)
int index = cChunkDef::MakeIndexNoCheck(x, y, z); int index = cChunkDef::MakeIndexNoCheck(x, y, z);
if (m_BlockTypes[index] != E_BLOCK_AIR) if (m_BlockTypes[index] != E_BLOCK_AIR)
{ {
m_HeightMap[x + z * cChunkDef::Width] = (HEIGHTTYPE)y; m_HeightMap[x + z * cChunkDef::Width] = static_cast<HEIGHTTYPE>(y);
break; break;
} }
} // for y } // for y

View File

@ -12,17 +12,32 @@
const float FLOAT_EPSILON = 0.0001f; // TODO: Stash this in some header where it can be reused
const std::array<const Vector3f, 6>& cTracer::m_NormalTable(void)
{
static std::array<const Vector3f, 6>* table =
new std::array<const Vector3f, 6>
{
{
Vector3f(-1, 0, 0), // 1: -x
Vector3f( 0, 0, -1), // 2: -z
Vector3f( 1, 0, 0), // 3: +x
Vector3f( 0, 0, 1), // 4: +z
Vector3f( 0, 1, 0), // 5: +y
Vector3f( 0, -1, 0) // 6: -y
}
};
return *table;
};
cTracer::cTracer(cWorld * a_World): cTracer::cTracer(cWorld * a_World):
m_World(a_World) m_World(a_World)
{ {
m_NormalTable[0].Set(-1, 0, 0);
m_NormalTable[1].Set( 0, 0, -1);
m_NormalTable[2].Set( 1, 0, 0);
m_NormalTable[3].Set( 0, 0, 1);
m_NormalTable[4].Set( 0, 1, 0);
m_NormalTable[5].Set( 0, -1, 0);
} }
@ -37,7 +52,7 @@ cTracer::~cTracer()
float cTracer::SigNum(float a_Num) int cTracer::SigNum(float a_Num)
{ {
if (a_Num < 0.f) if (a_Num < 0.f)
{ {
@ -56,26 +71,28 @@ float cTracer::SigNum(float a_Num)
void cTracer::SetValues(const Vector3f & a_Start, const Vector3f & a_Direction) void cTracer::SetValues(const Vector3f & a_Start, const Vector3f & a_Direction)
{ {
// Since this method should only be called by Trace, zero length vectors should already have been taken care of
ASSERT(a_Direction.HasNonZeroLength());
// calculate the direction of the ray (linear algebra) // calculate the direction of the ray (linear algebra)
dir = a_Direction; dir = a_Direction;
// decide which direction to start walking in // decide which direction to start walking in
step.x = (int) SigNum(dir.x); step.x = SigNum(dir.x);
step.y = (int) SigNum(dir.y); step.y = SigNum(dir.y);
step.z = (int) SigNum(dir.z); step.z = SigNum(dir.z);
// normalize the direction vector // normalize the direction vector
if (dir.SqrLength() > 0.f) dir.Normalize();
{
dir.Normalize();
}
// how far we must move in the ray direction before // how far we must move in the ray direction before
// we encounter a new voxel in x-direction // we encounter a new voxel in x-direction
// same but y-direction // same but y-direction
if (dir.x != 0.f) if (dir.x != 0.f)
{ {
tDelta.x = 1 / fabs(dir.x); tDelta.x = 1 / std::abs(dir.x);
} }
else else
{ {
@ -83,7 +100,7 @@ void cTracer::SetValues(const Vector3f & a_Start, const Vector3f & a_Direction)
} }
if (dir.y != 0.f) if (dir.y != 0.f)
{ {
tDelta.y = 1 / fabs(dir.y); tDelta.y = 1 / std::abs(dir.y);
} }
else else
{ {
@ -91,44 +108,45 @@ void cTracer::SetValues(const Vector3f & a_Start, const Vector3f & a_Direction)
} }
if (dir.z != 0.f) if (dir.z != 0.f)
{ {
tDelta.z = 1 / fabs(dir.z); tDelta.z = 1 / std::abs(dir.z);
} }
else else
{ {
tDelta.z = 0; tDelta.z = 0;
} }
// start voxel coordinates // start voxel coordinates
pos.x = (int)floorf(a_Start.x); pos.x = static_cast<int>(floorf(a_Start.x));
pos.y = (int)floorf(a_Start.y); pos.y = static_cast<int>(floorf(a_Start.y));
pos.z = (int)floorf(a_Start.z); pos.z = static_cast<int>(floorf(a_Start.z));
// calculate distance to first intersection in the voxel we start from // calculate distance to first intersection in the voxel we start from
if (dir.x < 0) if (dir.x < 0)
{ {
tMax.x = ((float)pos.x - a_Start.x) / dir.x; tMax.x = (static_cast<float>(pos.x) - a_Start.x) / dir.x;
} }
else else
{ {
tMax.x = (((float)pos.x + 1) - a_Start.x) / dir.x; tMax.x = (static_cast<float>(pos.x + 1) - a_Start.x) / dir.x; // TODO: Possible division by zero
} }
if (dir.y < 0) if (dir.y < 0)
{ {
tMax.y = ((float)pos.y - a_Start.y) / dir.y; tMax.y = (static_cast<float>(pos.y) - a_Start.y) / dir.y;
} }
else else
{ {
tMax.y = (((float)pos.y + 1) - a_Start.y) / dir.y; tMax.y = (static_cast<float>(pos.y + 1) - a_Start.y) / dir.y; // TODO: Possible division by zero
} }
if (dir.z < 0) if (dir.z < 0)
{ {
tMax.z = ((float)pos.z - a_Start.z) / dir.z; tMax.z = (static_cast<float>(pos.z) - a_Start.z) / dir.z;
} }
else else
{ {
tMax.z = (((float)pos.z + 1) - a_Start.z) / dir.z; tMax.z = (static_cast<float>(pos.z + 1) - a_Start.z) / dir.z; // TODO: Possible division by zero
} }
} }
@ -138,6 +156,11 @@ void cTracer::SetValues(const Vector3f & a_Start, const Vector3f & a_Direction)
bool cTracer::Trace(const Vector3f & a_Start, const Vector3f & a_Direction, int a_Distance, bool a_LineOfSight) bool cTracer::Trace(const Vector3f & a_Start, const Vector3f & a_Direction, int a_Distance, bool a_LineOfSight)
{ {
if (!a_Direction.HasNonZeroLength())
{
return false;
}
if ((a_Start.y < 0) || (a_Start.y >= cChunkDef::Height)) if ((a_Start.y < 0) || (a_Start.y >= cChunkDef::Height))
{ {
LOGD("%s: Start Y is outside the world (%.2f), not tracing.", __FUNCTION__, a_Start.y); LOGD("%s: Start Y is outside the world (%.2f), not tracing.", __FUNCTION__, a_Start.y);
@ -146,18 +169,18 @@ bool cTracer::Trace(const Vector3f & a_Start, const Vector3f & a_Direction, int
SetValues(a_Start, a_Direction); SetValues(a_Start, a_Direction);
Vector3f End = a_Start + (dir * (float)a_Distance); Vector3f End = a_Start + (dir * static_cast<float>(a_Distance));
if (End.y < 0) if (End.y < 0)
{ {
float dist = -a_Start.y / dir.y; float dist = -a_Start.y / dir.y; // No division by 0 possible
End = a_Start + (dir * dist); End = a_Start + (dir * dist);
} }
// end voxel coordinates // end voxel coordinates
end1.x = (int)floorf(End.x); end1.x = static_cast<int>(floorf(End.x));
end1.y = (int)floorf(End.y); end1.y = static_cast<int>(floorf(End.y));
end1.z = (int)floorf(End.z); end1.z = static_cast<int>(floorf(End.z));
// check if first is occupied // check if first is occupied
if (pos.Equals(end1)) if (pos.Equals(end1))
@ -241,7 +264,7 @@ bool cTracer::Trace(const Vector3f & a_Start, const Vector3f & a_Direction, int
int Normal = GetHitNormal(a_Start, End, pos); int Normal = GetHitNormal(a_Start, End, pos);
if (Normal > 0) if (Normal > 0)
{ {
HitNormal = m_NormalTable[Normal-1]; HitNormal = m_NormalTable()[Normal - 1];
} }
return true; return true;
} }
@ -295,8 +318,7 @@ int cTracer::intersect3D_SegmentPlane(const Vector3f & a_Origin, const Vector3f
float D = a_PlaneNormal.Dot(u); // dot(Pn.n, u); float D = a_PlaneNormal.Dot(u); // dot(Pn.n, u);
float N = -(a_PlaneNormal.Dot(w)); // -dot(a_Plane.n, w); float N = -(a_PlaneNormal.Dot(w)); // -dot(a_Plane.n, w);
const float EPSILON = 0.0001f; if (std::abs(D) < FLOAT_EPSILON)
if (fabs(D) < EPSILON)
{ {
// segment is parallel to plane // segment is parallel to plane
if (N == 0.0) if (N == 0.0)

View File

@ -3,6 +3,8 @@
#include "Vector3.h" #include "Vector3.h"
#include <array>
@ -61,10 +63,11 @@ private:
/// Return 1 through 6 for the following block faces, repectively: -x, -z, x, z, y, -y /// Return 1 through 6 for the following block faces, repectively: -x, -z, x, z, y, -y
int GetHitNormal( const Vector3f & start, const Vector3f & end, const Vector3i & a_BlockPos); int GetHitNormal( const Vector3f & start, const Vector3f & end, const Vector3i & a_BlockPos);
float SigNum( float a_Num); /// Signum function
int SigNum( float a_Num);
cWorld* m_World; cWorld* m_World;
Vector3f m_NormalTable[6]; static const std::array<const Vector3f, 6> & m_NormalTable(void);
Vector3f dir; Vector3f dir;
Vector3f tDelta; Vector3f tDelta;

View File

@ -78,6 +78,20 @@ public:
); );
} }
inline bool HasNonZeroLength(void) const
{
#ifndef __GNUC__
#pragma clang diagnostics push
#pragma clang diagnostics ignored "-Wfloat-equal"
#endif
return ((x != 0) || (y != 0) || (z != 0));
#ifndef __GNUC__
#pragma clang diagnostics pop
#endif
}
inline double Length(void) const inline double Length(void) const
{ {
return sqrt(static_cast<double>(x * x + y * y + z * z)); return sqrt(static_cast<double>(x * x + y * y + z * z));
@ -119,13 +133,19 @@ public:
inline bool Equals(const Vector3<T> & a_Rhs) const inline bool Equals(const Vector3<T> & a_Rhs) const
{ {
// Perform a bitwise comparison of the contents - we want to know whether this object is exactly equal // Perform a strict comparison of the contents - we want to know whether this object is exactly equal
// To perform EPS-based comparison, use the EqualsEps() function // To perform EPS-based comparison, use the EqualsEps() function
return (
(memcmp(&x, &a_Rhs.x, sizeof(x)) == 0) && #ifndef __GNUC__
(memcmp(&y, &a_Rhs.y, sizeof(y)) == 0) && #pragma clang diagnostics push
(memcmp(&z, &a_Rhs.z, sizeof(z)) == 0) #pragma clang diagnostics ignored "-Wfloat-equal"
); #endif
return !((x != a_Rhs.x) || (y != a_Rhs.y) || (z != a_Rhs.z));
#ifndef __GNUC__
#pragma clang diagnostics pop
#endif
} }
inline bool EqualsEps(const Vector3<T> & a_Rhs, T a_Eps) const inline bool EqualsEps(const Vector3<T> & a_Rhs, T a_Eps) const