1
0
Fork 0

Implement protocol level chunk sparsing (#3864)

This commit is contained in:
peterbell10 2017-08-21 17:56:53 +01:00 committed by Alexander Harkness
parent ad3192d696
commit 096cdac80d
8 changed files with 363 additions and 313 deletions

View File

@ -27,16 +27,23 @@ template <typename T> inline bool IsAllValue(const T * a_Array, size_t a_NumElem
cChunkData::cChunkData(cAllocationPool<cChunkData::sChunkSection> & a_Pool) :
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
m_IsOwner(true),
#endif
cChunkData::cChunkData(cAllocationPool<cChunkData::sChunkSection> & a_Pool):
m_Sections(),
m_Pool(a_Pool)
{
}
cChunkData::cChunkData(cChunkData && a_Other):
m_Pool(a_Other.m_Pool)
{
for (size_t i = 0; i < NumSections; i++)
{
m_Sections[i] = nullptr;
m_Sections[i] = a_Other.m_Sections[i];
a_Other.m_Sections[i] = nullptr;
}
}
@ -46,17 +53,29 @@ cChunkData::cChunkData(cAllocationPool<cChunkData::sChunkSection> & a_Pool) :
cChunkData::~cChunkData()
{
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
if (!m_IsOwner)
{
return;
}
#endif
for (size_t i = 0; i < NumSections; i++)
Clear();
}
void cChunkData::Assign(const cChunkData & a_Other)
{
// If assigning to self, no-op
if (&a_Other == this)
{
Free(m_Sections[i]);
m_Sections[i] = nullptr;
return;
}
Clear();
for (size_t i = 0; i < NumSections; ++i)
{
if (a_Other.m_Sections[i] != nullptr)
{
m_Sections[i] = Allocate();
*m_Sections[i] = *a_Other.m_Sections[i];
}
}
}
@ -64,85 +83,28 @@ cChunkData::~cChunkData()
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
cChunkData::cChunkData(const cChunkData & a_Other) :
m_IsOwner(true),
m_Pool(a_Other.m_Pool)
void cChunkData::Assign(cChunkData && a_Other)
{
if (&a_Other == this)
{
// Move contents and ownership from a_Other to this, pointer-wise:
for (size_t i = 0; i < NumSections; i++)
{
m_Sections[i] = a_Other.m_Sections[i];
}
a_Other.m_IsOwner = false;
return;
}
cChunkData & cChunkData::operator =(const cChunkData & a_Other)
if (&m_Pool != &a_Other.m_Pool)
{
// If assigning to self, no-op
if (&a_Other == this)
{
return *this;
}
// Free any currently held contents:
if (m_IsOwner)
{
for (size_t i = 0; i < NumSections; i++)
{
Free(m_Sections[i]);
m_Sections[i] = nullptr;
}
}
// Move contents and ownership from a_Other to this, pointer-wise:
m_IsOwner = true;
for (size_t i = 0; i < NumSections; i++)
{
m_Sections[i] = a_Other.m_Sections[i];
}
a_Other.m_IsOwner = false;
ASSERT(&m_Pool == &a_Other.m_Pool);
return *this;
// Cannot transfer the memory, do a copy instead
const cChunkData & CopyOther = a_Other;
Assign(CopyOther);
return;
}
#else
// unique_ptr style interface for memory management
cChunkData::cChunkData(cChunkData && other) :
m_Pool(other.m_Pool)
Clear();
for (size_t i = 0; i < NumSections; i++)
{
for (size_t i = 0; i < NumSections; i++)
{
m_Sections[i] = other.m_Sections[i];
other.m_Sections[i] = nullptr;
}
m_Sections[i] = a_Other.m_Sections[i];
a_Other.m_Sections[i] = nullptr;
}
cChunkData & cChunkData::operator =(cChunkData && other)
{
if (&other != this)
{
ASSERT(&m_Pool == &other.m_Pool);
for (size_t i = 0; i < NumSections; i++)
{
Free(m_Sections[i]);
m_Sections[i] = other.m_Sections[i];
other.m_Sections[i] = nullptr;
}
}
return *this;
}
#endif
}
@ -325,18 +287,45 @@ NIBBLETYPE cChunkData::GetSkyLight(int a_RelX, int a_RelY, int a_RelZ) const
cChunkData cChunkData::Copy(void) const
const cChunkData::sChunkSection * cChunkData::GetSection(size_t a_SectionNum) const
{
cChunkData copy(m_Pool);
for (size_t i = 0; i < NumSections; i++)
if (a_SectionNum < NumSections)
{
return m_Sections[a_SectionNum];
}
ASSERT(!"cChunkData::GetSection: section index out of range");
return nullptr;
}
UInt16 cChunkData::GetSectionBitmask() const
{
static_assert(NumSections <= 16U, "cChunkData::GetSectionBitmask needs a bigger data type");
UInt16 Res = 0U;
for (size_t i = 0U; i < NumSections; ++i)
{
Res |= ((m_Sections[i] != nullptr) << i);
}
return Res;
}
void cChunkData::Clear()
{
for (size_t i = 0; i < NumSections; ++i)
{
if (m_Sections[i] != nullptr)
{
copy.m_Sections[i] = copy.Allocate();
*copy.m_Sections[i] = *m_Sections[i];
Free(m_Sections[i]);
m_Sections[i] = nullptr;
}
}
return copy;
}
@ -569,6 +558,23 @@ void cChunkData::SetSkyLight(const NIBBLETYPE * a_Src)
UInt32 cChunkData::NumPresentSections() const
{
UInt32 Ret = 0U;
for (size_t i = 0; i < NumSections; i++)
{
if (m_Sections[i] != nullptr)
{
++Ret;
}
}
return Ret;
}
cChunkData::sChunkSection * cChunkData::Allocate(void)
{
return m_Pool.Allocate();

View File

@ -16,36 +16,37 @@
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
#else
// unique_ptr style interface for memory management
#endif
class cChunkData
{
private:
public:
static const int SectionHeight = 16;
static const size_t NumSections = (cChunkDef::Height / SectionHeight);
static const size_t SectionBlockCount = SectionHeight * cChunkDef::Width * cChunkDef::Width;
public:
struct sChunkSection
{
BLOCKTYPE m_BlockTypes[SectionBlockCount];
NIBBLETYPE m_BlockMetas[SectionBlockCount / 2];
NIBBLETYPE m_BlockLight[SectionBlockCount / 2];
NIBBLETYPE m_BlockSkyLight[SectionBlockCount / 2];
};
struct sChunkSection;
cChunkData(cAllocationPool<cChunkData::sChunkSection> & a_Pool);
cChunkData(cAllocationPool<sChunkSection> & a_Pool);
cChunkData(cChunkData && a_Other);
~cChunkData();
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
cChunkData(const cChunkData & a_Other);
cChunkData & operator =(const cChunkData & a_Other);
#else
// unique_ptr style interface for memory management
cChunkData(cChunkData && a_Other);
cChunkData & operator =(cChunkData && a_ther);
#endif
cChunkData & operator = (cChunkData && a_Other)
{
Assign(std::move(a_Other));
return *this;
}
/** Copy assign from another cChunkData */
void Assign(const cChunkData & a_Other);
/** Move assign from another cChunkData */
void Assign(cChunkData && a_Other);
BLOCKTYPE GetBlock(int a_X, int a_Y, int a_Z) const;
void SetBlock(int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE a_Block);
@ -57,8 +58,14 @@ public:
NIBBLETYPE GetSkyLight(int a_RelX, int a_RelY, int a_RelZ) const;
/** Creates a (deep) copy of self. */
cChunkData Copy(void) const;
/** Return a pointer to the chunk section or nullptr if all air */
const sChunkSection * GetSection(size_t a_SectionNum) const;
/** Returns a bitmask of chunk sections which are currently stored. */
UInt16 GetSectionBitmask() const;
/** Clears all data */
void Clear();
/** Copies the blocktype data into the specified flat array.
Optionally, only a part of the data is copied, as specified by the a_Idx and a_Length parameters. */
@ -93,23 +100,14 @@ public:
Allows a_Src to be nullptr, in which case it doesn't do anything. */
void SetSkyLight(const NIBBLETYPE * a_Src);
struct sChunkSection
{
BLOCKTYPE m_BlockTypes [SectionHeight * 16 * 16] ;
NIBBLETYPE m_BlockMetas [SectionHeight * 16 * 16 / 2];
NIBBLETYPE m_BlockLight [SectionHeight * 16 * 16 / 2];
NIBBLETYPE m_BlockSkyLight[SectionHeight * 16 * 16 / 2];
};
/** Returns the number of sections present (i.e. non-air). */
UInt32 NumPresentSections() const;
private:
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
mutable bool m_IsOwner;
#endif
sChunkSection * m_Sections[NumSections];
cAllocationPool<cChunkData::sChunkSection> & m_Pool;
cAllocationPool<sChunkSection> & m_Pool;
/** Allocates a new section. Entry-point to custom allocators. */
sChunkSection * Allocate(void);

View File

@ -101,3 +101,37 @@ protected:
/** A simple implementation of the cChunkDataCallback interface that just copies the cChunkData */
class cChunkDataCopyCollector :
public cChunkDataCallback
{
public:
struct MemCallbacks:
cAllocationPool<cChunkData::sChunkSection>::cStarvationCallbacks
{
virtual void OnStartUsingReserve() override {}
virtual void OnEndUsingReserve() override {}
virtual void OnOutOfReserve() override {}
};
cChunkDataCopyCollector():
m_Pool(cpp14::make_unique<MemCallbacks>()),
m_Data(m_Pool)
{
}
cListAllocationPool<cChunkData::sChunkSection, cChunkData::NumSections> m_Pool; // Keep 1 chunk worth of reserve
cChunkData m_Data;
protected:
virtual void ChunkData(const cChunkData & a_ChunkBuffer) override
{
m_Data.Assign(a_ChunkBuffer);
}
};

View File

@ -257,7 +257,7 @@ void cChunkSender::SendChunk(int a_ChunkX, int a_ChunkZ, std::unordered_set<cCli
{
return;
}
cChunkDataSerializer Data(m_BlockTypes, m_BlockMetas, m_BlockLight, m_BlockSkyLight, m_BiomeMap, m_World.GetDimension());
cChunkDataSerializer Data(m_Data, m_BiomeMap, m_World.GetDimension());
for (const auto client : a_Clients)
{
@ -271,6 +271,7 @@ void cChunkSender::SendChunk(int a_ChunkX, int a_ChunkZ, std::unordered_set<cCli
} // for itr - m_Packets[]
}
m_Data.Clear();
m_BlockEntities.clear();
// TODO: Send entity spawn packets

View File

@ -51,7 +51,7 @@ class cChunkSender;
class cChunkSender:
public cIsThread,
public cChunkDataSeparateCollector
public cChunkDataCopyCollector
{
typedef cIsThread super;
public:

View File

@ -15,18 +15,34 @@
/** Calls the given function with every present chunk section. */
template <class Func>
void ForEachSection(const cChunkData & a_Data, Func a_Func)
{
for (size_t SectionIdx = 0; SectionIdx < cChunkData::NumSections; ++SectionIdx)
{
auto Section = a_Data.GetSection(SectionIdx);
if (Section != nullptr)
{
a_Func(*Section);
}
}
}
////////////////////////////////////////////////////////////////////////////////
// cChunkDataSerializer:
cChunkDataSerializer::cChunkDataSerializer(
const cChunkDef::BlockTypes & a_BlockTypes,
const cChunkDef::BlockNibbles & a_BlockMetas,
const cChunkDef::BlockNibbles & a_BlockLight,
const cChunkDef::BlockNibbles & a_BlockSkyLight,
const unsigned char * a_BiomeData,
const eDimension a_Dimension
) :
m_BlockTypes(a_BlockTypes),
m_BlockMetas(a_BlockMetas),
m_BlockLight(a_BlockLight),
m_BlockSkyLight(a_BlockSkyLight),
const cChunkData & a_Data,
const unsigned char * a_BiomeData,
const eDimension a_Dimension
):
m_Data(a_Data),
m_BiomeData(a_BiomeData),
m_Dimension(a_Dimension)
{
@ -35,6 +51,7 @@ cChunkDataSerializer::cChunkDataSerializer(
const AString & cChunkDataSerializer::Serialize(int a_Version, int a_ChunkX, int a_ChunkZ)
{
Serializations::const_iterator itr = m_Serializations.find(a_Version);
@ -68,6 +85,7 @@ const AString & cChunkDataSerializer::Serialize(int a_Version, int a_ChunkX, int
void cChunkDataSerializer::Serialize47(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
// This function returns the fully compressed packet (including packet size), not the raw packet!
@ -77,32 +95,49 @@ void cChunkDataSerializer::Serialize47(AString & a_Data, int a_ChunkX, int a_Chu
Packet.WriteVarInt32(0x21); // Packet id (Chunk Data packet)
Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBEUInt16(0xffff); // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBEUInt16(m_Data.GetSectionBitmask());
// Write the chunk size:
const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
UInt32 ChunkSize = (
(cChunkDef::NumBlocks * 2) + // Block meta + type
sizeof(m_BlockLight) + // Block light
sizeof(m_BlockSkyLight) + // Block sky light
BiomeDataSize // Biome data
m_Data.NumPresentSections() * cChunkData::SectionBlockCount * 3 + // Blocks and lighting
BiomeDataSize // Biome data
);
Packet.WriteVarInt32(ChunkSize);
// Write the block types to the packet:
for (size_t Index = 0; Index < cChunkDef::NumBlocks; Index++)
{
BLOCKTYPE BlockType = m_BlockTypes[Index] & 0xFF;
NIBBLETYPE BlockMeta = m_BlockMetas[Index / 2] >> ((Index & 1) * 4) & 0x0f;
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta);
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4));
}
// Chunk written as seperate arrays of (blocktype + meta), blocklight and skylight
// each array stores all present sections of the same kind packed together
// Write the rest:
Packet.WriteBuf(m_BlockLight, sizeof(m_BlockLight));
Packet.WriteBuf(m_BlockSkyLight, sizeof(m_BlockSkyLight));
Packet.WriteBuf(m_BiomeData, BiomeDataSize);
// Write the block types to the packet:
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
{
for (size_t BlockIdx = 0; BlockIdx != cChunkData::SectionBlockCount; ++BlockIdx)
{
BLOCKTYPE BlockType = a_Section.m_BlockTypes[BlockIdx] & 0xFF;
NIBBLETYPE BlockMeta = a_Section.m_BlockMetas[BlockIdx / 2] >> ((BlockIdx & 1) * 4) & 0x0f;
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta);
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4));
}
}
);
// Write the block lights:
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
{
Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
}
);
// Write the sky lights:
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
{
Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
}
);
// Write the biome data:
Packet.WriteBuf(m_BiomeData, BiomeDataSize);
AString PacketData;
Packet.ReadAll(PacketData);
@ -147,102 +182,92 @@ void cChunkDataSerializer::Serialize107(AString & a_Data, int a_ChunkX, int a_Ch
Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteVarInt32(0x0000ffff); // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
Packet.WriteVarInt32(m_Data.GetSectionBitmask());
// Write the chunk size:
const size_t NumChunkSections = 16;
const size_t ChunkSectionBlocks = 16 * 16 * 16;
const size_t BitsPerEntry = 13;
const size_t Mask = (1 << BitsPerEntry) - 1; // Creates a mask that is 13 bits long, ie 0b1111111111111
const size_t ChunkSectionDataArraySize = (ChunkSectionBlocks * BitsPerEntry) / 8 / 8; // Convert from bit count to long count
const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; // Convert from bit count to long count
size_t ChunkSectionSize = (
1 + // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
1 + // Palette length
2 + // Data array length VarInt - 2 bytes for the current value
ChunkSectionDataArraySize * 8 + // Actual block data - multiplied by 8 because first number is longs
sizeof(m_BlockLight) / NumChunkSections // Block light
1 + // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
1 + // Palette length
2 + // Data array length VarInt - 2 bytes for the current value
ChunkSectionDataArraySize * 8 + // Actual block data - multiplied by 8 because first number is longs
cChunkData::SectionBlockCount / 2 // Block light
);
if (m_Dimension == dimOverworld)
{
// Sky light is only sent in the overworld.
ChunkSectionSize += sizeof(m_BlockSkyLight) / NumChunkSections;
ChunkSectionSize += cChunkData::SectionBlockCount / 2;
}
const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
size_t ChunkSize = (
ChunkSectionSize * 16 +
ChunkSectionSize * m_Data.NumPresentSections() +
BiomeDataSize
);
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));
// Write each chunk section...
for (size_t SectionIndex = 0; SectionIndex < 16; SectionIndex++)
{
Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(0); // Palette length is 0
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
size_t StartIndex = SectionIndex * ChunkSectionBlocks;
UInt64 TempLong = 0; // Temporary value that will be stored into
UInt64 CurrentlyWrittenIndex = 0; // "Index" of the long that would be written to
for (size_t Index = 0; Index < ChunkSectionBlocks; Index++)
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
{
UInt64 Value = static_cast<UInt64>(m_BlockTypes[StartIndex + Index] << 4);
if (Index % 2 == 0)
Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(0); // Palette length is 0
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
UInt64 TempLong = 0; // Temporary value that will be stored into
UInt64 CurrentlyWrittenIndex = 0; // "Index" of the long that would be written to
for (size_t Index = 0; Index < cChunkData::SectionBlockCount; Index++)
{
Value |= m_BlockMetas[(StartIndex + Index) / 2] & 0x0f;
UInt64 Value = static_cast<UInt64>(a_Section.m_BlockTypes[Index] << 4);
if (Index % 2 == 0)
{
Value |= a_Section.m_BlockMetas[Index / 2] & 0x0f;
}
else
{
Value |= a_Section.m_BlockMetas[Index / 2] >> 4;
}
Value &= Mask; // It shouldn't go out of bounds, but it's still worth being careful
// Painful part where we write data into the long array. Based off of the normal code.
size_t BitPosition = Index * BitsPerEntry;
size_t FirstIndex = BitPosition / 64;
size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
size_t BitOffset = BitPosition % 64;
if (FirstIndex != CurrentlyWrittenIndex)
{
// Write the current data before modifiying it.
Packet.WriteBEUInt64(TempLong);
TempLong = 0;
CurrentlyWrittenIndex = FirstIndex;
}
TempLong |= (Value << BitOffset);
if (FirstIndex != SecondIndex)
{
// Part of the data is now in the second long; write the first one first
Packet.WriteBEUInt64(TempLong);
CurrentlyWrittenIndex = SecondIndex;
TempLong = (Value >> (64 - BitOffset));
}
}
else
// The last long will generally not be written
Packet.WriteBEUInt64(TempLong);
// Write lighting:
Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
if (m_Dimension == dimOverworld)
{
Value |= m_BlockMetas[(StartIndex + Index) / 2] >> 4;
}
Value &= Mask; // It shouldn't go out of bounds, but it's still worth being careful
// Painful part where we write data into the long array. Based off of the normal code.
size_t BitPosition = Index * BitsPerEntry;
size_t FirstIndex = BitPosition / 64;
size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
size_t BitOffset = BitPosition % 64;
if (FirstIndex != CurrentlyWrittenIndex)
{
// Write the current data before modifiying it.
Packet.WriteBEUInt64(TempLong);
TempLong = 0;
CurrentlyWrittenIndex = FirstIndex;
}
TempLong |= (Value << BitOffset);
if (FirstIndex != SecondIndex)
{
// Part of the data is now in the second long; write the first one first
Packet.WriteBEUInt64(TempLong);
CurrentlyWrittenIndex = SecondIndex;
TempLong = (Value >> (64 - BitOffset));
// Skylight is only sent in the overworld; the nether and end do not use it
Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
}
}
// The last long will generally not be written
Packet.WriteBEUInt64(TempLong);
// Light - stored as a nibble, so we need half sizes
// As far as I know, there isn't a method to only write a range of the array
for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
{
Packet.WriteBEUInt8(m_BlockLight[(StartIndex / 2) + Index]);
}
if (m_Dimension == dimOverworld)
{
// Skylight is only sent in the overworld; the nether and end do not use it
for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
{
Packet.WriteBEUInt8(m_BlockSkyLight[(StartIndex / 2) + Index]);
}
}
}
);
// Write the biome data
Packet.WriteBuf(m_BiomeData, BiomeDataSize);
@ -290,102 +315,92 @@ void cChunkDataSerializer::Serialize110(AString & a_Data, int a_ChunkX, int a_Ch
Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteVarInt32(0x0000ffff); // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
Packet.WriteVarInt32(m_Data.GetSectionBitmask());
// Write the chunk size:
const size_t NumChunkSections = 16;
const size_t ChunkSectionBlocks = 16 * 16 * 16;
const size_t BitsPerEntry = 13;
const size_t Mask = (1 << BitsPerEntry) - 1; // Creates a mask that is 13 bits long, ie 0b1111111111111
const size_t ChunkSectionDataArraySize = (ChunkSectionBlocks * BitsPerEntry) / 8 / 8; // Convert from bit count to long count
const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; // Convert from bit count to long count
size_t ChunkSectionSize = (
1 + // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
1 + // Palette length
2 + // Data array length VarInt - 2 bytes for the current value
ChunkSectionDataArraySize * 8 + // Actual block data - multiplied by 8 because first number is longs
sizeof(m_BlockLight) / NumChunkSections // Block light
1 + // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
1 + // Palette length
2 + // Data array length VarInt - 2 bytes for the current value
ChunkSectionDataArraySize * 8 + // Actual block data - multiplied by 8 because first number is longs
cChunkData::SectionBlockCount / 2 // Block light
);
if (m_Dimension == dimOverworld)
{
// Sky light is only sent in the overworld.
ChunkSectionSize += sizeof(m_BlockSkyLight) / NumChunkSections;
ChunkSectionSize += cChunkData::SectionBlockCount / 2;
}
const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
size_t ChunkSize = (
ChunkSectionSize * 16 +
ChunkSectionSize * m_Data.NumPresentSections() +
BiomeDataSize
);
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));
// Write each chunk section...
for (size_t SectionIndex = 0; SectionIndex < 16; SectionIndex++)
{
Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(0); // Palette length is 0
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
size_t StartIndex = SectionIndex * ChunkSectionBlocks;
UInt64 TempLong = 0; // Temporary value that will be stored into
UInt64 CurrentlyWrittenIndex = 0; // "Index" of the long that would be written to
for (size_t Index = 0; Index < ChunkSectionBlocks; Index++)
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
{
UInt64 Value = static_cast<UInt64>(m_BlockTypes[StartIndex + Index] << 4);
if (Index % 2 == 0)
Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(0); // Palette length is 0
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
UInt64 TempLong = 0; // Temporary value that will be stored into
UInt64 CurrentlyWrittenIndex = 0; // "Index" of the long that would be written to
for (size_t Index = 0; Index < cChunkData::SectionBlockCount; Index++)
{
Value |= m_BlockMetas[(StartIndex + Index) / 2] & 0x0f;
UInt64 Value = static_cast<UInt64>(a_Section.m_BlockTypes[Index] << 4);
if (Index % 2 == 0)
{
Value |= a_Section.m_BlockMetas[Index / 2] & 0x0f;
}
else
{
Value |= a_Section.m_BlockMetas[Index / 2] >> 4;
}
Value &= Mask; // It shouldn't go out of bounds, but it's still worth being careful
// Painful part where we write data into the long array. Based off of the normal code.
size_t BitPosition = Index * BitsPerEntry;
size_t FirstIndex = BitPosition / 64;
size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
size_t BitOffset = BitPosition % 64;
if (FirstIndex != CurrentlyWrittenIndex)
{
// Write the current data before modifiying it.
Packet.WriteBEUInt64(TempLong);
TempLong = 0;
CurrentlyWrittenIndex = FirstIndex;
}
TempLong |= (Value << BitOffset);
if (FirstIndex != SecondIndex)
{
// Part of the data is now in the second long; write the first one first
Packet.WriteBEUInt64(TempLong);
CurrentlyWrittenIndex = SecondIndex;
TempLong = (Value >> (64 - BitOffset));
}
}
else
// The last long will generally not be written
Packet.WriteBEUInt64(TempLong);
// Write lighting:
Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
if (m_Dimension == dimOverworld)
{
Value |= m_BlockMetas[(StartIndex + Index) / 2] >> 4;
}
Value &= Mask; // It shouldn't go out of bounds, but it's still worth being careful
// Painful part where we write data into the long array. Based off of the normal code.
size_t BitPosition = Index * BitsPerEntry;
size_t FirstIndex = BitPosition / 64;
size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
size_t BitOffset = BitPosition % 64;
if (FirstIndex != CurrentlyWrittenIndex)
{
// Write the current data before modifiying it.
Packet.WriteBEUInt64(TempLong);
TempLong = 0;
CurrentlyWrittenIndex = FirstIndex;
}
TempLong |= (Value << BitOffset);
if (FirstIndex != SecondIndex)
{
// Part of the data is now in the second long; write the first one first
Packet.WriteBEUInt64(TempLong);
CurrentlyWrittenIndex = SecondIndex;
TempLong = (Value >> (64 - BitOffset));
// Skylight is only sent in the overworld; the nether and end do not use it
Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
}
}
// The last long will generally not be written
Packet.WriteBEUInt64(TempLong);
// Light - stored as a nibble, so we need half sizes
// As far as I know, there isn't a method to only write a range of the array
for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
{
Packet.WriteBEUInt8(m_BlockLight[(StartIndex / 2) + Index]);
}
if (m_Dimension == dimOverworld)
{
// Skylight is only sent in the overworld; the nether and end do not use it
for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
{
Packet.WriteBEUInt8(m_BlockSkyLight[(StartIndex / 2) + Index]);
}
}
}
);
// Write the biome data
Packet.WriteBuf(m_BiomeData, BiomeDataSize);

View File

@ -5,6 +5,7 @@
// - serialize chunk data to different protocol versions
// - cache such serialized data for multiple clients
#include "ChunkData.h"
@ -12,10 +13,7 @@
class cChunkDataSerializer
{
protected:
const cChunkDef::BlockTypes & m_BlockTypes;
const cChunkDef::BlockNibbles & m_BlockMetas;
const cChunkDef::BlockNibbles & m_BlockLight;
const cChunkDef::BlockNibbles & m_BlockSkyLight;
const cChunkData & m_Data;
const unsigned char * m_BiomeData;
const eDimension m_Dimension;
@ -36,12 +34,9 @@ public:
} ;
cChunkDataSerializer(
const cChunkDef::BlockTypes & a_BlockTypes,
const cChunkDef::BlockNibbles & a_BlockMetas,
const cChunkDef::BlockNibbles & a_BlockLight,
const cChunkDef::BlockNibbles & a_BlockSkyLight,
const unsigned char * a_BiomeData,
const eDimension a_Dimension
const cChunkData & a_Data,
const unsigned char * a_BiomeData,
const eDimension a_Dimension
);
const AString & Serialize(int a_Version, int a_ChunkX, int a_ChunkZ); // Returns one of the internal m_Serializations[]

View File

@ -27,7 +27,8 @@ int main(int argc, char** argv)
buffer.SetBlock(3, 1, 4, 0xDE);
buffer.SetMeta(3, 1, 4, 0xA);
cChunkData copy = buffer.Copy();
cChunkData copy(Pool);
copy.Assign(buffer);
testassert(copy.GetBlock(3, 1, 4) == 0xDE);
testassert(copy.GetMeta(3, 1, 4) == 0xA);