2013-07-29 07:13:03 -04:00
|
|
|
|
|
|
|
// LinearUpscale.h
|
|
|
|
|
|
|
|
// Declares the functions for linearly upscaling arrays
|
|
|
|
|
|
|
|
/*
|
|
|
|
Upscaling means that the array is divided into same-size "cells", and each cell is
|
|
|
|
linearly interpolated between its corners. The array's dimensions are therefore
|
|
|
|
1 + CellSize * NumCells, for each direction.
|
|
|
|
|
|
|
|
Upscaling is more efficient than linear interpolation, because the cell sizes are integral
|
|
|
|
and therefore the cells' boundaries are on the array points.
|
|
|
|
|
|
|
|
However, upscaling usually requires generating the "1 +" in each direction.
|
|
|
|
|
|
|
|
Upscaling is implemented in templates, so that it's compatible with multiple datatypes.
|
|
|
|
Therefore, there is no cpp file.
|
|
|
|
|
|
|
|
InPlace upscaling works on a single array and assumes that the values to work on have already
|
|
|
|
been interspersed into the array to the cell boundaries.
|
|
|
|
Specifically, a_Array[x * a_AnchorStepX + y * a_AnchorStepY] contains the anchor value.
|
|
|
|
|
|
|
|
Regular upscaling takes two arrays and "moves" the input from src to dst; src is expected packed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Linearly interpolates values in the array between the equidistant anchor points (upscales).
|
|
|
|
Works in-place (input is already present at the correct output coords)
|
|
|
|
*/
|
|
|
|
template<typename TYPE> void LinearUpscale2DArrayInPlace(
|
|
|
|
TYPE * a_Array,
|
|
|
|
int a_SizeX, int a_SizeY, // Dimensions of the array
|
|
|
|
int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// First interpolate columns where the anchor points are:
|
|
|
|
int LastYCell = a_SizeY - a_AnchorStepY;
|
|
|
|
for (int y = 0; y < LastYCell; y += a_AnchorStepY)
|
|
|
|
{
|
|
|
|
int Idx = a_SizeX * y;
|
|
|
|
for (int x = 0; x < a_SizeX; x += a_AnchorStepX)
|
|
|
|
{
|
|
|
|
TYPE StartValue = a_Array[Idx];
|
|
|
|
TYPE EndValue = a_Array[Idx + a_SizeX * a_AnchorStepY];
|
|
|
|
TYPE Diff = EndValue - StartValue;
|
|
|
|
for (int CellY = 1; CellY < a_AnchorStepY; CellY++)
|
|
|
|
{
|
|
|
|
a_Array[Idx + a_SizeX * CellY] = StartValue + Diff * CellY / a_AnchorStepY;
|
|
|
|
} // for CellY
|
|
|
|
Idx += a_AnchorStepX;
|
|
|
|
} // for x
|
|
|
|
} // for y
|
|
|
|
|
|
|
|
// Now interpolate in rows, each row has values in the anchor columns
|
|
|
|
int LastXCell = a_SizeX - a_AnchorStepX;
|
|
|
|
for (int y = 0; y < a_SizeY; y++)
|
|
|
|
{
|
|
|
|
int Idx = a_SizeX * y;
|
|
|
|
for (int x = 0; x < LastXCell; x += a_AnchorStepX)
|
|
|
|
{
|
|
|
|
TYPE StartValue = a_Array[Idx];
|
|
|
|
TYPE EndValue = a_Array[Idx + a_AnchorStepX];
|
|
|
|
TYPE Diff = EndValue - StartValue;
|
|
|
|
for (int CellX = 1; CellX < a_AnchorStepX; CellX++)
|
|
|
|
{
|
|
|
|
a_Array[Idx + CellX] = StartValue + CellX * Diff / a_AnchorStepX;
|
|
|
|
} // for CellY
|
|
|
|
Idx += a_AnchorStepX;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Linearly interpolates values in the array between the equidistant anchor points (upscales).
|
|
|
|
Works on two arrays, input is packed and output is to be completely constructed.
|
|
|
|
*/
|
|
|
|
template<typename TYPE> void LinearUpscale2DArray(
|
|
|
|
TYPE * a_Src, ///< Source array of size a_SrcSizeX x a_SrcSizeY
|
|
|
|
int a_SrcSizeX, int a_SrcSizeY, ///< Dimensions of the src array
|
|
|
|
TYPE * a_Dst, ///< Dest array, of size (a_SrcSizeX * a_UpscaleX + 1) x (a_SrcSizeY * a_UpscaleY + 1)
|
|
|
|
int a_UpscaleX, int a_UpscaleY ///< Upscale factor for each direction
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// For optimization reasons, we're storing the upscaling ratios in a fixed-size arrays of these sizes
|
|
|
|
// Feel free to enlarge them if needed, but keep in mind that they're on the stack
|
|
|
|
const int MAX_UPSCALE_X = 128;
|
|
|
|
const int MAX_UPSCALE_Y = 128;
|
|
|
|
|
|
|
|
ASSERT(a_Src != NULL);
|
|
|
|
ASSERT(a_Dst != NULL);
|
|
|
|
ASSERT(a_SrcSizeX > 0);
|
|
|
|
ASSERT(a_SrcSizeY > 0);
|
|
|
|
ASSERT(a_UpscaleX > 0);
|
|
|
|
ASSERT(a_UpscaleY > 0);
|
|
|
|
ASSERT(a_UpscaleX <= MAX_UPSCALE_X);
|
|
|
|
ASSERT(a_UpscaleY <= MAX_UPSCALE_Y);
|
|
|
|
|
|
|
|
// Pre-calculate the upscaling ratios:
|
|
|
|
TYPE RatioX[MAX_UPSCALE_X];
|
|
|
|
TYPE RatioY[MAX_UPSCALE_Y];
|
|
|
|
for (int x = 0; x <= a_UpscaleX; x++)
|
|
|
|
{
|
|
|
|
RatioX[x] = (TYPE)x / a_UpscaleX;
|
|
|
|
}
|
|
|
|
for (int y = 0; y <= a_UpscaleY; y++)
|
|
|
|
{
|
|
|
|
RatioY[y] = (TYPE)y / a_UpscaleY;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Interpolate each XY cell:
|
|
|
|
int DstSizeX = (a_SrcSizeX - 1) * a_UpscaleX + 1;
|
|
|
|
int DstSizeY = (a_SrcSizeY - 1) * a_UpscaleY + 1;
|
|
|
|
for (int y = 0; y < (a_SrcSizeY - 1); y++)
|
|
|
|
{
|
|
|
|
int DstY = y * a_UpscaleY;
|
|
|
|
int idx = y * a_SrcSizeX;
|
|
|
|
for (int x = 0; x < (a_SrcSizeX - 1); x++, idx++)
|
|
|
|
{
|
|
|
|
int DstX = x * a_UpscaleX;
|
|
|
|
TYPE LoXLoY = a_Src[idx];
|
|
|
|
TYPE LoXHiY = a_Src[idx + a_SrcSizeX];
|
|
|
|
TYPE HiXLoY = a_Src[idx + 1];
|
|
|
|
TYPE HiXHiY = a_Src[idx + 1 + a_SrcSizeX];
|
|
|
|
for (int CellY = 0; CellY <= a_UpscaleY; CellY++)
|
|
|
|
{
|
|
|
|
int DestIdx = (DstY + CellY) * DstSizeX + DstX;
|
|
|
|
ASSERT(DestIdx + a_UpscaleX < DstSizeX * DstSizeY);
|
|
|
|
TYPE LoXInY = LoXLoY + (LoXHiY - LoXLoY) * RatioY[CellY];
|
|
|
|
TYPE HiXInY = HiXLoY + (HiXHiY - HiXLoY) * RatioY[CellY];
|
|
|
|
for (int CellX = 0; CellX <= a_UpscaleX; CellX++, DestIdx++)
|
|
|
|
{
|
|
|
|
a_Dst[DestIdx] = LoXInY + (HiXInY - LoXInY) * RatioX[CellX];
|
|
|
|
}
|
|
|
|
} // for CellY
|
|
|
|
} // for x
|
|
|
|
} // for y
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Linearly interpolates values in the array between the equidistant anchor points (upscales).
|
|
|
|
Works on two arrays, input is packed and output is to be completely constructed.
|
|
|
|
*/
|
|
|
|
template<typename TYPE> void LinearUpscale3DArray(
|
|
|
|
TYPE * a_Src, ///< Source array of size a_SrcSizeX x a_SrcSizeY x a_SrcSizeZ
|
|
|
|
int a_SrcSizeX, int a_SrcSizeY, int a_SrcSizeZ, ///< Dimensions of the src array
|
|
|
|
TYPE * a_Dst, ///< Dest array, of size (a_SrcSizeX * a_UpscaleX + 1) x (a_SrcSizeY * a_UpscaleY + 1) x (a_SrcSizeZ * a_UpscaleZ + 1)
|
|
|
|
int a_UpscaleX, int a_UpscaleY, int a_UpscaleZ ///< Upscale factor for each direction
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// For optimization reasons, we're storing the upscaling ratios in a fixed-size arrays of these sizes
|
|
|
|
// Feel free to enlarge them if needed, but keep in mind that they're on the stack
|
|
|
|
const int MAX_UPSCALE_X = 128;
|
|
|
|
const int MAX_UPSCALE_Y = 128;
|
|
|
|
const int MAX_UPSCALE_Z = 128;
|
|
|
|
|
|
|
|
ASSERT(a_Src != NULL);
|
|
|
|
ASSERT(a_Dst != NULL);
|
|
|
|
ASSERT(a_SrcSizeX > 0);
|
|
|
|
ASSERT(a_SrcSizeY > 0);
|
|
|
|
ASSERT(a_SrcSizeZ > 0);
|
|
|
|
ASSERT(a_UpscaleX > 0);
|
|
|
|
ASSERT(a_UpscaleY > 0);
|
|
|
|
ASSERT(a_UpscaleZ > 0);
|
|
|
|
ASSERT(a_UpscaleX <= MAX_UPSCALE_X);
|
|
|
|
ASSERT(a_UpscaleY <= MAX_UPSCALE_Y);
|
|
|
|
ASSERT(a_UpscaleZ <= MAX_UPSCALE_Z);
|
|
|
|
|
|
|
|
// Pre-calculate the upscaling ratios:
|
|
|
|
TYPE RatioX[MAX_UPSCALE_X];
|
|
|
|
TYPE RatioY[MAX_UPSCALE_Y];
|
|
|
|
TYPE RatioZ[MAX_UPSCALE_Y];
|
|
|
|
for (int x = 0; x <= a_UpscaleX; x++)
|
|
|
|
{
|
|
|
|
RatioX[x] = (TYPE)x / a_UpscaleX;
|
|
|
|
}
|
|
|
|
for (int y = 0; y <= a_UpscaleY; y++)
|
|
|
|
{
|
|
|
|
RatioY[y] = (TYPE)y / a_UpscaleY;
|
|
|
|
}
|
|
|
|
for (int z = 0; z <= a_UpscaleZ; z++)
|
|
|
|
{
|
|
|
|
RatioZ[z] = (TYPE)z / a_UpscaleZ;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Interpolate each XYZ cell:
|
|
|
|
int DstSizeX = (a_SrcSizeX - 1) * a_UpscaleX + 1;
|
|
|
|
int DstSizeY = (a_SrcSizeY - 1) * a_UpscaleY + 1;
|
|
|
|
int DstSizeZ = (a_SrcSizeZ - 1) * a_UpscaleZ + 1;
|
|
|
|
for (int z = 0; z < (a_SrcSizeZ - 1); z++)
|
|
|
|
{
|
|
|
|
int DstZ = z * a_UpscaleZ;
|
|
|
|
for (int y = 0; y < (a_SrcSizeY - 1); y++)
|
|
|
|
{
|
|
|
|
int DstY = y * a_UpscaleY;
|
|
|
|
int idx = y * a_SrcSizeX + z * a_SrcSizeX * a_SrcSizeY;
|
|
|
|
for (int x = 0; x < (a_SrcSizeX - 1); x++, idx++)
|
|
|
|
{
|
|
|
|
int DstX = x * a_UpscaleX;
|
|
|
|
TYPE LoXLoYLoZ = a_Src[idx];
|
|
|
|
TYPE LoXLoYHiZ = a_Src[idx + a_SrcSizeX * a_SrcSizeY];
|
|
|
|
TYPE LoXHiYLoZ = a_Src[idx + a_SrcSizeX];
|
|
|
|
TYPE LoXHiYHiZ = a_Src[idx + a_SrcSizeX + a_SrcSizeX * a_SrcSizeY];
|
|
|
|
TYPE HiXLoYLoZ = a_Src[idx + 1];
|
|
|
|
TYPE HiXLoYHiZ = a_Src[idx + 1 + a_SrcSizeX * a_SrcSizeY];
|
|
|
|
TYPE HiXHiYLoZ = a_Src[idx + 1 + a_SrcSizeX];
|
|
|
|
TYPE HiXHiYHiZ = a_Src[idx + 1 + a_SrcSizeX + a_SrcSizeX * a_SrcSizeY];
|
|
|
|
for (int CellZ = 0; CellZ <= a_UpscaleZ; CellZ++)
|
|
|
|
{
|
|
|
|
TYPE LoXLoYInZ = LoXLoYLoZ + (LoXLoYHiZ - LoXLoYLoZ) * RatioZ[CellZ];
|
|
|
|
TYPE LoXHiYInZ = LoXHiYLoZ + (LoXHiYHiZ - LoXHiYLoZ) * RatioZ[CellZ];
|
|
|
|
TYPE HiXLoYInZ = HiXLoYLoZ + (HiXLoYHiZ - HiXLoYLoZ) * RatioZ[CellZ];
|
|
|
|
TYPE HiXHiYInZ = HiXHiYLoZ + (HiXHiYHiZ - HiXHiYLoZ) * RatioZ[CellZ];
|
|
|
|
for (int CellY = 0; CellY <= a_UpscaleY; CellY++)
|
|
|
|
{
|
|
|
|
int DestIdx = (DstZ + CellZ) * DstSizeX * DstSizeY + (DstY + CellY) * DstSizeX + DstX;
|
|
|
|
ASSERT(DestIdx + a_UpscaleX < DstSizeX * DstSizeY * DstSizeZ);
|
|
|
|
TYPE LoXInY = LoXLoYInZ + (LoXHiYInZ - LoXLoYInZ) * RatioY[CellY];
|
|
|
|
TYPE HiXInY = HiXLoYInZ + (HiXHiYInZ - HiXLoYInZ) * RatioY[CellY];
|
|
|
|
for (int CellX = 0; CellX <= a_UpscaleX; CellX++, DestIdx++)
|
|
|
|
{
|
|
|
|
a_Dst[DestIdx] = LoXInY + (HiXInY - LoXInY) * RatioX[CellX];
|
|
|
|
}
|
|
|
|
} // for CellY
|
|
|
|
} // for CellZ
|
|
|
|
} // for x
|
|
|
|
} // for y
|
|
|
|
} // for z
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|