1
0
cuberite-2a/source/Generating/Caves.cpp

969 lines
26 KiB
C++
Raw Normal View History

// Caves.cpp
// Implements the various cave structure generators:
// - cStructGenWormNestCaves
// - cStructGenDualRidgeCaves
// - cStructGenMarbleCaves
// - cStructGenNetherCaves
/*
WormNestCave generator:
Caves are generated in "nests" - groups of tunnels generated from a single point.
For each chunk, all the nests that could intersect it are generated.
For each nest, first the schematic structure is generated (tunnel from ... to ..., branch, tunnel2 from ... to ...)
Then each tunnel is randomized by inserting points in between its ends.
Finally each tunnel is smoothed and Bresenham-3D-ed so that it is a collection of spheres with their centers next to each other.
When the tunnels are ready, they are simply carved into the chunk, one by one.
To optimize, each tunnel keeps track of its bounding box, so that it can be skipped for chunks that don't intersect it.
MarbleCaves generator:
For each voxel a 3D noise function is evaluated, if the value crosses a boundary, the voxel is dug out, otherwise it is kept.
Problem with this is the amount of CPU work needed for each chunk.
Also the overall shape of the generated holes is unsatisfactory - there are whole "sheets" of holes in the ground.
DualRidgeCaves generator:
Instead of evaluating a single noise function, two different noise functions are multiplied. This produces
regular tunnels instead of sheets. However due to the sheer amount of CPU work needed, the noise functions need to be
reduced in complexity in order for this generator to be useful, so the caves' shapes are "bubbly" at best.
*/
#include "Globals.h"
#include "Caves.h"
/// How many nests in each direction are generated for a given chunk. Must be an even number
#define NEIGHBORHOOD_SIZE 8
const int MIN_RADIUS = 3;
const int MAX_RADIUS = 8;
struct cCaveDefPoint
{
int m_BlockX;
int m_BlockY;
int m_BlockZ;
int m_Radius;
cCaveDefPoint(int a_BlockX, int a_BlockY, int a_BlockZ, int a_Radius) :
m_BlockX(a_BlockX),
m_BlockY(a_BlockY),
m_BlockZ(a_BlockZ),
m_Radius(a_Radius)
{
}
} ;
typedef std::vector<cCaveDefPoint> cCaveDefPoints;
/// A single non-branching tunnel of a WormNestCave
class cCaveTunnel
{
// The bounding box, including the radii around defpoints:
int m_MinBlockX, m_MaxBlockX;
int m_MinBlockY, m_MaxBlockY;
int m_MinBlockZ, m_MaxBlockZ;
/// Generates the shaping defpoints for the ravine, based on the ravine block coords and noise
void Randomize(cNoise & a_Noise);
/// Refines (adds and smooths) defpoints from a_Src into a_Dst; returns false if no refinement possible (segments too short)
bool RefineDefPoints(const cCaveDefPoints & a_Src, cCaveDefPoints & a_Dst);
/// Does rounds of smoothing, two passes of RefineDefPoints(), as long as they return true
void Smooth(void);
/// Linearly interpolates the points so that the maximum distance between two neighbors is max 1 block
void FinishLinear(void);
/// Calculates the bounding box of the points present
void CalcBoundingBox(void);
public:
cCaveDefPoints m_Points;
cCaveTunnel(
int a_BlockStartX, int a_BlockStartY, int a_BlockStartZ, int a_StartRadius,
int a_BlockEndX, int a_BlockEndY, int a_BlockEndZ, int a_EndRadius,
cNoise & a_Noise
);
/// Carves the tunnel into the chunk specified
void ProcessChunk(
int a_ChunkX, int a_ChunkZ,
cChunkDef::BlockTypes & a_BlockTypes,
cChunkDef::HeightMap & a_HeightMap
);
#ifdef _DEBUG
AString ExportAsSVG(int a_Color, int a_OffsetX, int a_OffsetZ) const;
#endif // _DEBUG
} ;
typedef std::vector<cCaveTunnel *> cCaveTunnels;
/// A collection of connected tunnels, possibly branching.
class cStructGenWormNestCaves::cCaveSystem
{
public:
// The generating block position; is read directly in cStructGenWormNestCaves::GetCavesForChunk()
int m_BlockX;
int m_BlockZ;
cCaveSystem(int a_BlockX, int a_BlockZ, int a_MaxOffset, int a_Size, cNoise & a_Noise);
~cCaveSystem();
/// Carves the cave system into the chunk specified
void ProcessChunk(
int a_ChunkX, int a_ChunkZ,
cChunkDef::BlockTypes & a_BlockTypes,
cChunkDef::HeightMap & a_HeightMap
);
#ifdef _DEBUG
AString ExportAsSVG(int a_Color, int a_OffsetX, int a_OffsetZ) const;
#endif // _DEBUG
protected:
int m_Size;
cCaveTunnels m_Tunnels;
void Clear(void);
/// Generates a_Segment successive tunnels, with possible branches. Generates the same output for the same [x, y, z, a_Segments]
void GenerateTunnelsFromPoint(
int a_OriginX, int a_OriginY, int a_OriginZ,
cNoise & a_Noise, int a_Segments
);
/// Returns a radius based on the location provided.
int GetRadius(cNoise & a_Noise, int a_OriginX, int a_OriginY, int a_OriginZ);
} ;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cCaveTunnel:
cCaveTunnel::cCaveTunnel(
int a_BlockStartX, int a_BlockStartY, int a_BlockStartZ, int a_StartRadius,
int a_BlockEndX, int a_BlockEndY, int a_BlockEndZ, int a_EndRadius,
cNoise & a_Noise
)
{
m_Points.push_back(cCaveDefPoint(a_BlockStartX, a_BlockStartY, a_BlockStartZ, a_StartRadius));
m_Points.push_back(cCaveDefPoint(a_BlockEndX, a_BlockEndY, a_BlockEndZ, a_EndRadius));
if ((a_BlockStartY <= 0) && (a_BlockEndY <= 0))
{
// Don't bother detailing this cave, it's under the world anyway
return;
}
Randomize(a_Noise);
Smooth();
// We know that the linear finishing won't affect the bounding box, so let's calculate it now, as we have less data:
CalcBoundingBox();
FinishLinear();
}
void cCaveTunnel::Randomize(cNoise & a_Noise)
{
// Repeat 4 times:
for (int i = 0; i < 4; i++)
{
// For each already present point, insert a point in between it and its predecessor, shifted randomly.
int PrevX = m_Points.front().m_BlockX;
int PrevY = m_Points.front().m_BlockY;
int PrevZ = m_Points.front().m_BlockZ;
int PrevR = m_Points.front().m_Radius;
cCaveDefPoints Pts;
Pts.reserve(m_Points.size() * 2 + 1);
Pts.push_back(m_Points.front());
for (cCaveDefPoints::const_iterator itr = m_Points.begin() + 1, end = m_Points.end(); itr != end; ++itr)
{
int Random = a_Noise.IntNoise3DInt(PrevX, PrevY, PrevZ + i) / 11;
int len = (PrevX - itr->m_BlockX) * (PrevX - itr->m_BlockX);
len += (PrevY - itr->m_BlockY) * (PrevY - itr->m_BlockY);
len += (PrevZ - itr->m_BlockZ) * (PrevZ - itr->m_BlockZ);
len = 3 * (int)sqrt((double)len) / 4;
int Rad = std::min(MAX_RADIUS, std::max(MIN_RADIUS, (PrevR + itr->m_Radius) / 2 + (Random % 3) - 1));
Random /= 4;
int x = (itr->m_BlockX + PrevX) / 2 + (Random % (len + 1) - len / 2);
Random /= 256;
int y = (itr->m_BlockY + PrevY) / 2 + (Random % (len / 2 + 1) - len / 4);
Random /= 256;
int z = (itr->m_BlockZ + PrevZ) / 2 + (Random % (len + 1) - len / 2);
Pts.push_back(cCaveDefPoint(x, y, z, Rad));
Pts.push_back(*itr);
PrevX = itr->m_BlockX;
PrevY = itr->m_BlockY;
PrevZ = itr->m_BlockZ;
PrevR = itr->m_Radius;
}
std::swap(Pts, m_Points);
}
}
bool cCaveTunnel::RefineDefPoints(const cCaveDefPoints & a_Src, cCaveDefPoints & a_Dst)
{
// Smoothing: for each line segment, add points on its 1/4 lengths
bool res = false;
int Num = a_Src.size() - 2; // this many intermediary points
a_Dst.clear();
a_Dst.reserve(Num * 2 + 2);
cCaveDefPoints::const_iterator itr = a_Src.begin() + 1;
a_Dst.push_back(a_Src.front());
int PrevX = a_Src.front().m_BlockX;
int PrevY = a_Src.front().m_BlockY;
int PrevZ = a_Src.front().m_BlockZ;
int PrevR = a_Src.front().m_Radius;
for (int i = 0; i <= Num; ++i, ++itr)
{
int dx = itr->m_BlockX - PrevX;
int dy = itr->m_BlockY - PrevY;
int dz = itr->m_BlockZ - PrevZ;
if (abs(dx) + abs(dz) + abs(dy) < 6)
{
// Too short a segment to smooth-subdivide into quarters
PrevX = itr->m_BlockX;
PrevY = itr->m_BlockY;
PrevZ = itr->m_BlockZ;
PrevR = itr->m_Radius;
continue;
}
int dr = itr->m_Radius - PrevR;
int Rad1 = std::max(PrevR + 1 * dr / 4, 1);
int Rad2 = std::max(PrevR + 3 * dr / 4, 1);
a_Dst.push_back(cCaveDefPoint(PrevX + 1 * dx / 4, PrevY + 1 * dy / 4, PrevZ + 1 * dz / 4, Rad1));
a_Dst.push_back(cCaveDefPoint(PrevX + 3 * dx / 4, PrevY + 3 * dy / 4, PrevZ + 3 * dz / 4, Rad2));
PrevX = itr->m_BlockX;
PrevY = itr->m_BlockY;
PrevZ = itr->m_BlockZ;
PrevR = itr->m_Radius;
res = true;
}
a_Dst.push_back(a_Src.back());
return res && (a_Src.size() < a_Dst.size());
}
void cCaveTunnel::Smooth(void)
{
cCaveDefPoints Pts;
while (true)
{
if (!RefineDefPoints(m_Points, Pts))
{
std::swap(Pts, m_Points);
return;
}
if (!RefineDefPoints(Pts, m_Points))
{
return;
}
}
}
void cCaveTunnel::FinishLinear(void)
{
// For each segment, use Bresenham's 3D line algorithm to draw a "line" of defpoints
cCaveDefPoints Pts;
std::swap(Pts, m_Points);
m_Points.reserve(Pts.size() * 3);
int PrevX = Pts.front().m_BlockX;
int PrevY = Pts.front().m_BlockY;
int PrevZ = Pts.front().m_BlockZ;
for (cCaveDefPoints::const_iterator itr = Pts.begin() + 1, end = Pts.end(); itr != end; ++itr)
{
int x1 = itr->m_BlockX;
int y1 = itr->m_BlockY;
int z1 = itr->m_BlockZ;
int dx = abs(x1 - PrevX);
int dy = abs(y1 - PrevY);
int dz = abs(z1 - PrevZ);
int sx = (PrevX < x1) ? 1 : -1;
int sy = (PrevY < y1) ? 1 : -1;
int sz = (PrevZ < z1) ? 1 : -1;
int R = itr->m_Radius;
if (dx >= std::max(dy, dz)) // x dominant
{
int yd = dy - dx / 2;
int zd = dz - dx / 2;
while (true)
{
m_Points.push_back(cCaveDefPoint(PrevX, PrevY, PrevZ, R));
if (PrevX == x1)
{
break;
}
if (yd >= 0) // move along y
{
PrevY += sy;
yd -= dx;
}
if (zd >= 0) // move along z
{
PrevZ += sz;
zd -= dx;
}
// move along x
PrevX += sx;
yd += dy;
zd += dz;
}
}
else if (dy >= std::max(dx, dz)) // y dominant
{
int xd = dx - dy / 2;
int zd = dz - dy / 2;
while (true)
{
m_Points.push_back(cCaveDefPoint(PrevX, PrevY, PrevZ, R));
if (PrevY == y1)
{
break;
}
if (xd >= 0) // move along x
{
PrevX += sx;
xd -= dy;
}
if (zd >= 0) // move along z
{
PrevZ += sz;
zd -= dy;
}
// move along y
PrevY += sy;
xd += dx;
zd += dz;
}
}
else
{
// z dominant
ASSERT(dz >= std::max(dx, dy));
int xd = dx - dz / 2;
int yd = dy - dz / 2;
while (true)
{
m_Points.push_back(cCaveDefPoint(PrevX, PrevY, PrevZ, R));
if (PrevZ == z1)
{
break;
}
if (xd >= 0) // move along x
{
PrevX += sx;
xd -= dz;
}
if (yd >= 0) // move along y
{
PrevY += sy;
yd -= dz;
}
// move along z
PrevZ += sz;
xd += dx;
yd += dy;
}
} // if (which dimension is dominant)
} // for itr
}
void cCaveTunnel::CalcBoundingBox(void)
{
m_MinBlockX = m_MaxBlockX = m_Points.front().m_BlockX;
m_MinBlockY = m_MaxBlockY = m_Points.front().m_BlockY;
m_MinBlockZ = m_MaxBlockZ = m_Points.front().m_BlockZ;
for (cCaveDefPoints::const_iterator itr = m_Points.begin() + 1, end = m_Points.end(); itr != end; ++itr)
{
m_MinBlockX = std::min(m_MinBlockX, itr->m_BlockX - itr->m_Radius);
m_MaxBlockX = std::max(m_MaxBlockX, itr->m_BlockX + itr->m_Radius);
m_MinBlockY = std::min(m_MinBlockY, itr->m_BlockY - itr->m_Radius);
m_MaxBlockY = std::max(m_MaxBlockY, itr->m_BlockY + itr->m_Radius);
m_MinBlockZ = std::min(m_MinBlockZ, itr->m_BlockZ - itr->m_Radius);
m_MaxBlockZ = std::max(m_MaxBlockZ, itr->m_BlockZ + itr->m_Radius);
} // for itr - m_Points[]
}
void cCaveTunnel::ProcessChunk(
int a_ChunkX, int a_ChunkZ,
cChunkDef::BlockTypes & a_BlockTypes,
cChunkDef::HeightMap & a_HeightMap
)
{
int BaseX = a_ChunkX * cChunkDef::Width;
int BaseZ = a_ChunkZ * cChunkDef::Width;
if (
(BaseX > m_MaxBlockX) || (BaseX + cChunkDef::Width < m_MinBlockX) ||
2013-11-16 13:52:48 -05:00
(BaseZ > m_MaxBlockZ) || (BaseZ + cChunkDef::Width < m_MinBlockZ)
)
{
// Tunnel does not intersect the chunk at all, bail out
return;
}
int BlockStartX = a_ChunkX * cChunkDef::Width;
int BlockStartZ = a_ChunkZ * cChunkDef::Width;
int BlockEndX = BlockStartX + cChunkDef::Width;
int BlockEndZ = BlockStartZ + cChunkDef::Width;
for (cCaveDefPoints::const_iterator itr = m_Points.begin(), end = m_Points.end(); itr != end; ++itr)
{
if (
(itr->m_BlockX + itr->m_Radius < BlockStartX) ||
(itr->m_BlockX - itr->m_Radius > BlockEndX) ||
(itr->m_BlockZ + itr->m_Radius < BlockStartZ) ||
(itr->m_BlockZ - itr->m_Radius > BlockEndZ)
)
{
// Cannot intersect, bail out early
continue;
}
// Carve out a sphere around the xyz point, m_Radius in diameter; skip 3/7 off the top and bottom:
int DifX = itr->m_BlockX - BlockStartX; // substitution for faster calc
int DifY = itr->m_BlockY;
int DifZ = itr->m_BlockZ - BlockStartZ; // substitution for faster calc
int Bottom = std::max(itr->m_BlockY - 3 * itr->m_Radius / 7, 1);
int Top = std::min(itr->m_BlockY + 3 * itr->m_Radius / 7, (int)(cChunkDef::Height));
int SqRad = itr->m_Radius * itr->m_Radius;
for (int z = 0; z < cChunkDef::Width; z++) for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = Bottom; y <= Top; y++)
{
int SqDist = (DifX - x) * (DifX - x) + (DifY - y) * (DifY - y) + (DifZ - z) * (DifZ - z);
if (4 * SqDist <= SqRad)
{
switch (cChunkDef::GetBlock(a_BlockTypes, x, y, z))
{
// Only carve out these specific block types
case E_BLOCK_DIRT:
case E_BLOCK_GRASS:
case E_BLOCK_STONE:
case E_BLOCK_COBBLESTONE:
case E_BLOCK_GRAVEL:
case E_BLOCK_SAND:
case E_BLOCK_SANDSTONE:
case E_BLOCK_NETHERRACK:
case E_BLOCK_COAL_ORE:
case E_BLOCK_IRON_ORE:
case E_BLOCK_GOLD_ORE:
case E_BLOCK_DIAMOND_ORE:
case E_BLOCK_REDSTONE_ORE:
case E_BLOCK_REDSTONE_ORE_GLOWING:
{
cChunkDef::SetBlock(a_BlockTypes, x, y, z, E_BLOCK_AIR);
break;
}
default: break;
}
}
} // for y
} // for x, z
} // for itr - m_Points[]
/*
#ifdef _DEBUG
// For debugging purposes, outline the shape of the cave using glowstone, *after* carving the entire cave:
for (cCaveDefPoints::const_iterator itr = m_Points.begin(), end = m_Points.end(); itr != end; ++itr)
{
int DifX = itr->m_BlockX - BlockStartX; // substitution for faster calc
int DifZ = itr->m_BlockZ - BlockStartZ; // substitution for faster calc
if (
(DifX >= 0) && (DifX < cChunkDef::Width) &&
(itr->m_BlockY > 0) && (itr->m_BlockY < cChunkDef::Height) &&
(DifZ >= 0) && (DifZ < cChunkDef::Width)
)
{
cChunkDef::SetBlock(a_BlockTypes, DifX, itr->m_BlockY, DifZ, E_BLOCK_GLOWSTONE);
}
} // for itr - m_Points[]
#endif // _DEBUG
//*/
}
#ifdef _DEBUG
AString cCaveTunnel::ExportAsSVG(int a_Color, int a_OffsetX, int a_OffsetZ) const
{
AString SVG;
SVG.reserve(m_Points.size() * 20 + 200);
AppendPrintf(SVG, "<path style=\"fill:none;stroke:#%06x;stroke-width:1px;\"\nd=\"", a_Color);
char Prefix = 'M'; // The first point needs "M" prefix, all the others need "L"
for (cCaveDefPoints::const_iterator itr = m_Points.begin(); itr != m_Points.end(); ++itr)
{
AppendPrintf(SVG, "%c %d,%d ", Prefix, a_OffsetX + itr->m_BlockX, a_OffsetZ + itr->m_BlockZ);
Prefix = 'L';
}
SVG.append("\"/>\n");
return SVG;
}
#endif // _DEBUG
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cStructGenWormNestCaves::cCaveSystem:
cStructGenWormNestCaves::cCaveSystem::cCaveSystem(int a_BlockX, int a_BlockZ, int a_MaxOffset, int a_Size, cNoise & a_Noise) :
m_BlockX(a_BlockX),
m_BlockZ(a_BlockZ),
m_Size(a_Size)
{
int Num = 1 + a_Noise.IntNoise2DInt(a_BlockX, a_BlockZ) % 3;
for (int i = 0; i < Num; i++)
{
int OriginX = a_BlockX + (a_Noise.IntNoise3DInt(13 * a_BlockX, 17 * a_BlockZ, 11 * i) / 19) % a_MaxOffset;
int OriginZ = a_BlockZ + (a_Noise.IntNoise3DInt(17 * a_BlockX, 13 * a_BlockZ, 11 * i) / 23) % a_MaxOffset;
int OriginY = 20 + (a_Noise.IntNoise3DInt(19 * a_BlockX, 13 * a_BlockZ, 11 * i) / 17) % 20;
// Generate three branches from the origin point:
// The tunnels generated depend on X, Y, Z and Branches,
// for the same set of numbers it generates the same offsets!
// That's why we add a +1 to X in the third line
GenerateTunnelsFromPoint(OriginX, OriginY, OriginZ, a_Noise, 3);
GenerateTunnelsFromPoint(OriginX, OriginY, OriginZ, a_Noise, 2);
GenerateTunnelsFromPoint(OriginX + 1, OriginY, OriginZ, a_Noise, 3);
}
}
cStructGenWormNestCaves::cCaveSystem::~cCaveSystem()
{
Clear();
}
void cStructGenWormNestCaves::cCaveSystem::ProcessChunk(
int a_ChunkX, int a_ChunkZ,
cChunkDef::BlockTypes & a_BlockTypes,
cChunkDef::HeightMap & a_HeightMap
)
{
for (cCaveTunnels::const_iterator itr = m_Tunnels.begin(), end = m_Tunnels.end(); itr != end; ++itr)
{
(*itr)->ProcessChunk(a_ChunkX, a_ChunkZ, a_BlockTypes, a_HeightMap);
} // for itr - m_Tunnels[]
}
#ifdef _DEBUG
AString cStructGenWormNestCaves::cCaveSystem::ExportAsSVG(int a_Color, int a_OffsetX, int a_OffsetZ) const
{
AString SVG;
SVG.reserve(512 * 1024);
for (cCaveTunnels::const_iterator itr = m_Tunnels.begin(), end = m_Tunnels.end(); itr != end; ++itr)
{
SVG.append((*itr)->ExportAsSVG(a_Color, a_OffsetX, a_OffsetZ));
} // for itr - m_Tunnels[]
// Base point highlight:
AppendPrintf(SVG, "<path style=\"fill:none;stroke:#ff0000;stroke-width:1px;\"\nd=\"M %d,%d L %d,%d\"/>\n",
a_OffsetX + m_BlockX - 5, a_OffsetZ + m_BlockZ, a_OffsetX + m_BlockX + 5, a_OffsetZ + m_BlockZ
);
AppendPrintf(SVG, "<path style=\"fill:none;stroke:#ff0000;stroke-width:1px;\"\nd=\"M %d,%d L %d,%d\"/>\n",
a_OffsetX + m_BlockX, a_OffsetZ + m_BlockZ - 5, a_OffsetX + m_BlockX, a_OffsetZ + m_BlockZ + 5
);
// A gray line from the base point to the first point of the ravine, for identification:
AppendPrintf(SVG, "<path style=\"fill:none;stroke:#cfcfcf;stroke-width:1px;\"\nd=\"M %d,%d L %d,%d\"/>\n",
a_OffsetX + m_BlockX, a_OffsetZ + m_BlockZ,
a_OffsetX + m_Tunnels.front()->m_Points.front().m_BlockX,
a_OffsetZ + m_Tunnels.front()->m_Points.front().m_BlockZ
);
// Offset guides:
if (a_OffsetX > 0)
{
AppendPrintf(SVG, "<path style=\"fill:none;stroke:#0000ff;stroke-width:1px;\"\nd=\"M %d,0 L %d,1024\"/>\n",
a_OffsetX, a_OffsetX
);
}
if (a_OffsetZ > 0)
{
AppendPrintf(SVG, "<path style=\"fill:none;stroke:#0000ff;stroke-width:1px;\"\nd=\"M 0,%d L 1024,%d\"/>\n",
a_OffsetZ, a_OffsetZ
);
}
return SVG;
}
#endif // _DEBUG
void cStructGenWormNestCaves::cCaveSystem::Clear(void)
{
for (cCaveTunnels::const_iterator itr = m_Tunnels.begin(), end = m_Tunnels.end(); itr != end; ++itr)
{
delete *itr;
}
m_Tunnels.clear();
}
void cStructGenWormNestCaves::cCaveSystem::GenerateTunnelsFromPoint(
int a_OriginX, int a_OriginY, int a_OriginZ,
cNoise & a_Noise, int a_NumSegments
)
{
int DoubleSize = m_Size * 2;
int Radius = GetRadius(a_Noise, a_OriginX + a_OriginY, a_OriginY + a_OriginZ, a_OriginZ + a_OriginX);
for (int i = a_NumSegments - 1; i >= 0; --i)
{
int EndX = a_OriginX + (((a_Noise.IntNoise3DInt(a_OriginX, a_OriginY, a_OriginZ + 11 * a_NumSegments) / 7) % DoubleSize) - m_Size) / 2;
int EndY = a_OriginY + (((a_Noise.IntNoise3DInt(a_OriginY, 13 * a_NumSegments, a_OriginZ + a_OriginX) / 7) % DoubleSize) - m_Size) / 4;
int EndZ = a_OriginZ + (((a_Noise.IntNoise3DInt(a_OriginZ + 17 * a_NumSegments, a_OriginX, a_OriginY) / 7) % DoubleSize) - m_Size) / 2;
int EndR = GetRadius(a_Noise, a_OriginX + 7 * i, a_OriginY + 11 * i, a_OriginZ + a_OriginX);
m_Tunnels.push_back(new cCaveTunnel(a_OriginX, a_OriginY, a_OriginZ, Radius, EndX, EndY, EndZ, EndR, a_Noise));
GenerateTunnelsFromPoint(EndX, EndY, EndZ, a_Noise, i);
a_OriginX = EndX;
a_OriginY = EndY;
a_OriginZ = EndZ;
Radius = EndR;
} // for i - a_NumSegments
}
int cStructGenWormNestCaves::cCaveSystem::GetRadius(cNoise & a_Noise, int a_OriginX, int a_OriginY, int a_OriginZ)
{
// Instead of a flat distribution noise function, we need to shape it, so that most caves are smallish and only a few select are large
int rnd = a_Noise.IntNoise3DInt(a_OriginX, a_OriginY, a_OriginZ) / 11;
/*
// Not good enough:
// The algorithm of choice: emulate gauss-distribution noise by adding 3 flat noises, then fold it in half using absolute value.
// To save on processing, use one random value and extract 3 bytes to be separately added as the gaussian noise
int sum = (rnd & 0xff) + ((rnd >> 8) & 0xff) + ((rnd >> 16) & 0xff);
// sum is now a gaussian-distribution noise within [0 .. 767], with center at 384.
// We want mapping 384 -> 3, 0 -> 19, 768 -> 19, so divide by 24 to get [0 .. 31] with center at 16, then use abs() to fold around the center
int res = 3 + abs((sum / 24) - 16);
*/
// Algorithm of choice: random value in the range of zero to random value - heavily towards zero
int res = MIN_RADIUS + (rnd >> 8) % ((rnd % (MAX_RADIUS - MIN_RADIUS)) + 1);
return res;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cStructGenWormNestCaves:
cStructGenWormNestCaves::~cStructGenWormNestCaves()
{
ClearCache();
}
void cStructGenWormNestCaves::ClearCache(void)
{
for (cCaveSystems::const_iterator itr = m_Cache.begin(), end = m_Cache.end(); itr != end; ++itr)
{
delete *itr;
} // for itr - m_Cache[]
m_Cache.clear();
}
void cStructGenWormNestCaves::GenStructures(cChunkDesc & a_ChunkDesc)
{
int ChunkX = a_ChunkDesc.GetChunkX();
int ChunkZ = a_ChunkDesc.GetChunkZ();
cCaveSystems Caves;
GetCavesForChunk(ChunkX, ChunkZ, Caves);
for (cCaveSystems::const_iterator itr = Caves.begin(); itr != Caves.end(); ++itr)
{
(*itr)->ProcessChunk(ChunkX, ChunkZ, a_ChunkDesc.GetBlockTypes(), a_ChunkDesc.GetHeightMap());
} // for itr - Caves[]
}
void cStructGenWormNestCaves::GetCavesForChunk(int a_ChunkX, int a_ChunkZ, cStructGenWormNestCaves::cCaveSystems & a_Caves)
{
int BaseX = a_ChunkX * cChunkDef::Width / m_Grid;
int BaseZ = a_ChunkZ * cChunkDef::Width / m_Grid;
if (BaseX < 0)
{
--BaseX;
}
if (BaseZ < 0)
{
--BaseZ;
}
BaseX -= NEIGHBORHOOD_SIZE / 2;
BaseZ -= NEIGHBORHOOD_SIZE / 2;
// Walk the cache, move each cave system that we want into a_Caves:
int StartX = BaseX * m_Grid;
int EndX = (BaseX + NEIGHBORHOOD_SIZE + 1) * m_Grid;
int StartZ = BaseZ * m_Grid;
int EndZ = (BaseZ + NEIGHBORHOOD_SIZE + 1) * m_Grid;
for (cCaveSystems::iterator itr = m_Cache.begin(), end = m_Cache.end(); itr != end;)
{
if (
((*itr)->m_BlockX >= StartX) && ((*itr)->m_BlockX < EndX) &&
((*itr)->m_BlockZ >= StartZ) && ((*itr)->m_BlockZ < EndZ)
)
{
// want
a_Caves.push_back(*itr);
itr = m_Cache.erase(itr);
}
else
{
// don't want
++itr;
}
} // for itr - m_Cache[]
for (int x = 0; x < NEIGHBORHOOD_SIZE; x++)
{
int RealX = (BaseX + x) * m_Grid;
for (int z = 0; z < NEIGHBORHOOD_SIZE; z++)
{
int RealZ = (BaseZ + z) * m_Grid;
bool Found = false;
for (cCaveSystems::const_iterator itr = a_Caves.begin(), end = a_Caves.end(); itr != end; ++itr)
{
if (((*itr)->m_BlockX == RealX) && ((*itr)->m_BlockZ == RealZ))
{
Found = true;
break;
}
}
if (!Found)
{
a_Caves.push_back(new cCaveSystem(RealX, RealZ, m_MaxOffset, m_Size, m_Noise));
}
}
}
// Copy a_Caves into m_Cache to the beginning:
cCaveSystems CavesCopy(a_Caves);
m_Cache.splice(m_Cache.begin(), CavesCopy, CavesCopy.begin(), CavesCopy.end());
// Trim the cache if it's too long:
if (m_Cache.size() > 100)
{
cCaveSystems::iterator itr = m_Cache.begin();
std::advance(itr, 100);
for (cCaveSystems::iterator end = m_Cache.end(); itr != end; ++itr)
{
delete *itr;
}
itr = m_Cache.begin();
std::advance(itr, 100);
m_Cache.erase(itr, m_Cache.end());
}
/*
// Uncomment this block for debugging the caves' shapes in 2D using an SVG export
#ifdef _DEBUG
AString SVG;
SVG.append("<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"1024\" height = \"1024\">\n");
SVG.reserve(2 * 1024 * 1024);
for (cCaveSystems::const_iterator itr = a_Caves.begin(), end = a_Caves.end(); itr != end; ++itr)
{
int Color = 0x10 * abs((*itr)->m_BlockX / m_Grid);
Color |= 0x1000 * abs((*itr)->m_BlockZ / m_Grid);
SVG.append((*itr)->ExportAsSVG(Color, 512, 512));
}
SVG.append("</svg>\n");
AString fnam;
Printf(fnam, "wnc\\%03d_%03d.svg", a_ChunkX, a_ChunkZ);
cFile File(fnam, cFile::fmWrite);
File.Write(SVG.c_str(), SVG.size());
#endif // _DEBUG
//*/
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cStructGenMarbleCaves:
static float GetMarbleNoise( float x, float y, float z, cNoise & a_Noise )
{
static const float PI_2 = 1.57079633f;
float oct1 = (a_Noise.CubicNoise3D(x * 0.1f, y * 0.1f, z * 0.1f )) * 4;
oct1 = oct1 * oct1 * oct1;
if (oct1 < 0.f) oct1 = PI_2;
if (oct1 > PI_2) oct1 = PI_2;
return oct1;
}
void cStructGenMarbleCaves::GenStructures(cChunkDesc & a_ChunkDesc)
{
cNoise Noise(m_Seed);
for (int z = 0; z < cChunkDef::Width; z++)
{
const float zz = (float)(a_ChunkDesc.GetChunkZ() * cChunkDef::Width + z);
for (int x = 0; x < cChunkDef::Width; x++)
{
const float xx = (float)(a_ChunkDesc.GetChunkX() * cChunkDef::Width + x);
int Top = a_ChunkDesc.GetHeight(x, z);
for (int y = 1; y < Top; ++y )
{
if (a_ChunkDesc.GetBlockType(x, y, z) != E_BLOCK_STONE)
{
continue;
}
const float yy = (float)y;
const float WaveNoise = 1;
if (cosf(GetMarbleNoise(xx, yy * 0.5f, zz, Noise)) * fabs(cosf(yy * 0.2f + WaveNoise * 2) * 0.75f + WaveNoise) > 0.0005f)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_AIR);
}
} // for y
} // for x
} // for z
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cStructGenDualRidgeCaves:
void cStructGenDualRidgeCaves::GenStructures(cChunkDesc & a_ChunkDesc)
{
for (int z = 0; z < cChunkDef::Width; z++)
{
const float zz = (float)(a_ChunkDesc.GetChunkZ() * cChunkDef::Width + z) / 10;
for (int x = 0; x < cChunkDef::Width; x++)
{
const float xx = (float)(a_ChunkDesc.GetChunkX() * cChunkDef::Width + x) / 10;
int Top = a_ChunkDesc.GetHeight(x, z);
for (int y = 1; y <= Top; ++y)
{
const float yy = (float)y / 10;
float n1 = m_Noise1.CubicNoise3D(xx, yy, zz);
float n2 = m_Noise2.CubicNoise3D(xx, yy, zz);
float n3 = m_Noise1.CubicNoise3D(xx * 4, yy * 4, zz * 4) / 4;
float n4 = m_Noise2.CubicNoise3D(xx * 4, yy * 4, zz * 4) / 4;
if ((abs(n1 + n3) * abs(n2 + n4)) > m_Threshold)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_AIR);
}
} // for y
} // for x
} // for z
}