1
0
cuberite-2a/src/Generating/Noise3DGenerator.cpp

575 lines
15 KiB
C++
Raw Normal View History

// Nosie3DGenerator.cpp
// Generates terrain using 3D noise, rather than composing. Is a test.
#include "Globals.h"
#include "Noise3DGenerator.h"
#include "../OSSupport/File.h"
2013-11-27 02:40:59 -05:00
#include "inifile/iniFile.h"
#include "../LinearInterpolation.h"
#include "../LinearUpscale.h"
/*
// Perform an automatic test of upscaling upon program start (use breakpoints to debug):
class Test
{
public:
Test(void)
{
DoTest1();
DoTest2();
}
void DoTest1(void)
{
float In[3 * 3 * 3];
for (size_t i = 0; i < ARRAYCOUNT(In); i++)
{
In[i] = (float)(i % 5);
}
Debug3DNoise(In, 3, 3, 3, "Upscale3D in");
float Out[17 * 33 * 35];
LinearUpscale3DArray(In, 3, 3, 3, Out, 8, 16, 17);
Debug3DNoise(Out, 17, 33, 35, "Upscale3D test");
}
void DoTest2(void)
{
float In[3 * 3];
for (size_t i = 0; i < ARRAYCOUNT(In); i++)
{
In[i] = (float)(i % 5);
}
Debug2DNoise(In, 3, 3, "Upscale2D in");
float Out[17 * 33];
LinearUpscale2DArray(In, 3, 3, Out, 8, 16);
Debug2DNoise(Out, 17, 33, "Upscale2D test");
}
} gTest;
//*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cNoise3DGenerator:
cNoise3DGenerator::cNoise3DGenerator(cChunkGenerator & a_ChunkGenerator) :
super(a_ChunkGenerator),
m_Perlin(1000),
m_Cubic(1000)
{
m_Perlin.AddOctave(1, (NOISE_DATATYPE)0.5);
m_Perlin.AddOctave((NOISE_DATATYPE)0.5, 1);
m_Perlin.AddOctave((NOISE_DATATYPE)0.5, 2);
#if 0
// DEBUG: Test the noise generation:
// NOTE: In order to be able to run MCS with this code, you need to increase the default thread stack size
// In MSVC, it is done in Project Settings -> Configuration Properties -> Linker -> System, set Stack reserve size to at least 64M
m_SeaLevel = 62;
m_HeightAmplification = 0;
m_MidPoint = 75;
m_FrequencyX = 4;
m_FrequencyY = 4;
m_FrequencyZ = 4;
m_AirThreshold = 0.5;
const int NumChunks = 4;
NOISE_DATATYPE Noise[NumChunks][cChunkDef::Width * cChunkDef::Width * cChunkDef::Height];
for (int x = 0; x < NumChunks; x++)
{
GenerateNoiseArray(x, 5, Noise[x]);
}
// Save in XY cuts:
cFile f1;
if (f1.Open("Test_XY.grab", cFile::fmWrite))
{
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
for (int i = 0; i < NumChunks; i++)
{
int idx = y * cChunkDef::Width + z * cChunkDef::Width * cChunkDef::Height;
unsigned char buf[cChunkDef::Width];
for (int x = 0; x < cChunkDef::Width; x++)
{
buf[x] = (unsigned char)(std::min(256, std::max(0, (int)(128 + 32 * Noise[i][idx++]))));
}
f1.Write(buf, cChunkDef::Width);
}
} // for y
} // for z
} // if (XY file open)
cFile f2;
if (f2.Open("Test_XZ.grab", cFile::fmWrite))
{
for (int y = 0; y < cChunkDef::Height; y++)
{
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int i = 0; i < NumChunks; i++)
{
int idx = y * cChunkDef::Width + z * cChunkDef::Width * cChunkDef::Height;
unsigned char buf[cChunkDef::Width];
for (int x = 0; x < cChunkDef::Width; x++)
{
buf[x] = (unsigned char)(std::min(256, std::max(0, (int)(128 + 32 * Noise[i][idx++]))));
}
f2.Write(buf, cChunkDef::Width);
}
} // for z
} // for y
} // if (XZ file open)
#endif // 0
}
cNoise3DGenerator::~cNoise3DGenerator()
{
// Nothing needed yet
}
void cNoise3DGenerator::Initialize(cIniFile & a_IniFile)
{
// Params:
m_SeaLevel = a_IniFile.GetValueSetI("Generator", "Noise3DSeaLevel", 62);
m_HeightAmplification = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DHeightAmplification", 0);
m_MidPoint = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DMidPoint", 75);
m_FrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyX", 8);
m_FrequencyY = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyY", 8);
m_FrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyZ", 8);
m_AirThreshold = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DAirThreshold", 0.5);
}
void cNoise3DGenerator::GenerateBiomes(int a_ChunkX, int a_ChunkZ, cChunkDef::BiomeMap & a_BiomeMap)
{
for (size_t i = 0; i < ARRAYCOUNT(a_BiomeMap); i++)
{
a_BiomeMap[i] = biExtremeHills;
}
}
void cNoise3DGenerator::DoGenerate(int a_ChunkX, int a_ChunkZ, cChunkDesc & a_ChunkDesc)
{
NOISE_DATATYPE Noise[17 * 257 * 17];
GenerateNoiseArray(a_ChunkX, a_ChunkZ, Noise);
// Output noise into chunk:
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
int idx = z * 17 * 257 + y * 17;
for (int x = 0; x < cChunkDef::Width; x++)
{
NOISE_DATATYPE n = Noise[idx++];
BLOCKTYPE BlockType;
if (n > m_AirThreshold)
{
BlockType = (y > m_SeaLevel) ? E_BLOCK_AIR : E_BLOCK_STATIONARY_WATER;
}
else
{
BlockType = E_BLOCK_STONE;
}
a_ChunkDesc.SetBlockType(x, y, z, BlockType);
}
}
}
UpdateHeightmap(a_ChunkDesc);
ComposeTerrain (a_ChunkDesc);
}
void cNoise3DGenerator::GenerateNoiseArray(int a_ChunkX, int a_ChunkZ, NOISE_DATATYPE * a_OutNoise)
{
NOISE_DATATYPE NoiseO[DIM_X * DIM_Y * DIM_Z]; // Output for the Perlin noise
NOISE_DATATYPE NoiseW[DIM_X * DIM_Y * DIM_Z]; // Workspace that the noise calculation can use and trash
// Our noise array has different layout, XZY, instead of regular chunk's XYZ, that's why the coords are "renamed"
NOISE_DATATYPE StartX = ((NOISE_DATATYPE)(a_ChunkX * cChunkDef::Width)) / m_FrequencyX;
NOISE_DATATYPE EndX = ((NOISE_DATATYPE)((a_ChunkX + 1) * cChunkDef::Width) - 1) / m_FrequencyX;
NOISE_DATATYPE StartZ = ((NOISE_DATATYPE)(a_ChunkZ * cChunkDef::Width)) / m_FrequencyZ;
NOISE_DATATYPE EndZ = ((NOISE_DATATYPE)((a_ChunkZ + 1) * cChunkDef::Width) - 1) / m_FrequencyZ;
NOISE_DATATYPE StartY = 0;
NOISE_DATATYPE EndY = ((NOISE_DATATYPE)256) / m_FrequencyY;
m_Perlin.Generate3D(NoiseO, DIM_X, DIM_Y, DIM_Z, StartX, EndX, StartY, EndY, StartZ, EndZ, NoiseW);
// DEBUG: Debug3DNoise(NoiseO, DIM_X, DIM_Y, DIM_Z, Printf("Chunk_%d_%d_orig", a_ChunkX, a_ChunkZ));
// Precalculate a "height" array:
NOISE_DATATYPE Height[DIM_X * DIM_Z]; // Output for the cubic noise heightmap ("source")
m_Cubic.Generate2D(Height, DIM_X, DIM_Z, StartX / 25, EndX / 25, StartZ / 25, EndZ / 25);
for (size_t i = 0; i < ARRAYCOUNT(Height); i++)
{
Height[i] = abs(Height[i]) * m_HeightAmplification + 1;
}
// Modify the noise by height data:
for (int y = 0; y < DIM_Y; y++)
{
NOISE_DATATYPE AddHeight = (y * UPSCALE_Y - m_MidPoint) / 20;
AddHeight *= AddHeight * AddHeight;
for (int z = 0; z < DIM_Z; z++)
{
NOISE_DATATYPE * CurRow = &(NoiseO[y * DIM_X + z * DIM_X * DIM_Y]);
for (int x = 0; x < DIM_X; x++)
{
CurRow[x] += AddHeight / Height[x + DIM_X * z];
}
}
}
// DEBUG: Debug3DNoise(NoiseO, DIM_X, DIM_Y, DIM_Z, Printf("Chunk_%d_%d_hei", a_ChunkX, a_ChunkZ));
// Upscale the Perlin noise into full-blown chunk dimensions:
LinearUpscale3DArray(
NoiseO, DIM_X, DIM_Y, DIM_Z,
a_OutNoise, UPSCALE_X, UPSCALE_Y, UPSCALE_Z
);
// DEBUG: Debug3DNoise(a_OutNoise, 17, 257, 17, Printf("Chunk_%d_%d_lerp", a_ChunkX, a_ChunkZ));
}
void cNoise3DGenerator::UpdateHeightmap(cChunkDesc & a_ChunkDesc)
{
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = cChunkDef::Height - 1; y > 0; y--)
{
if (a_ChunkDesc.GetBlockType(x, y, z) != E_BLOCK_AIR)
{
a_ChunkDesc.SetHeight(x, z, y);
break;
}
} // for y
} // for x
} // for z
}
void cNoise3DGenerator::ComposeTerrain(cChunkDesc & a_ChunkDesc)
{
// Make basic terrain composition:
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
int LastAir = a_ChunkDesc.GetHeight(x, z) + 1;
bool HasHadWater = false;
for (int y = LastAir - 1; y > 0; y--)
{
switch (a_ChunkDesc.GetBlockType(x, y, z))
{
case E_BLOCK_AIR:
{
LastAir = y;
break;
}
case E_BLOCK_STONE:
{
if (LastAir - y > 3)
{
break;
}
if (HasHadWater)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_SAND);
}
else
{
a_ChunkDesc.SetBlockType(x, y, z, (LastAir == y + 1) ? E_BLOCK_GRASS : E_BLOCK_DIRT);
}
break;
}
case E_BLOCK_STATIONARY_WATER:
{
LastAir = y;
HasHadWater = true;
break;
}
} // switch (GetBlockType())
} // for y
a_ChunkDesc.SetBlockType(x, 0, z, E_BLOCK_BEDROCK);
} // for x
} // for z
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cNoise3DComposable:
cNoise3DComposable::cNoise3DComposable(int a_Seed) :
m_Noise1(a_Seed + 1000),
m_Noise2(a_Seed + 2000),
m_Noise3(a_Seed + 3000)
{
}
void cNoise3DComposable::Initialize(cIniFile & a_IniFile)
{
// Params:
m_SeaLevel = a_IniFile.GetValueSetI("Generator", "Noise3DSeaLevel", 62);
m_HeightAmplification = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DHeightAmplification", 0);
m_MidPoint = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DMidPoint", 75);
m_FrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyX", 10);
m_FrequencyY = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyY", 10);
m_FrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyZ", 10);
m_AirThreshold = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DAirThreshold", 0.5);
}
void cNoise3DComposable::GenerateNoiseArrayIfNeeded(int a_ChunkX, int a_ChunkZ)
{
if ((a_ChunkX == m_LastChunkX) && (a_ChunkZ == m_LastChunkZ))
{
// The noise for this chunk is already generated in m_Noise
return;
}
m_LastChunkX = a_ChunkX;
m_LastChunkZ = a_ChunkZ;
// Upscaling parameters:
const int UPSCALE_X = 8;
const int UPSCALE_Y = 4;
const int UPSCALE_Z = 8;
// Precalculate a "height" array:
NOISE_DATATYPE Height[17 * 17]; // x + 17 * z
for (int z = 0; z < 17; z += UPSCALE_Z)
{
NOISE_DATATYPE NoiseZ = ((NOISE_DATATYPE)(a_ChunkZ * cChunkDef::Width + z)) / m_FrequencyZ;
for (int x = 0; x < 17; x += UPSCALE_X)
{
NOISE_DATATYPE NoiseX = ((NOISE_DATATYPE)(a_ChunkX * cChunkDef::Width + x)) / m_FrequencyX;
NOISE_DATATYPE val = abs(m_Noise1.CubicNoise2D(NoiseX / 5, NoiseZ / 5)) * m_HeightAmplification + 1;
Height[x + 17 * z] = val * val * val;
}
}
for (int y = 0; y < 257; y += UPSCALE_Y)
{
NOISE_DATATYPE NoiseY = ((NOISE_DATATYPE)y) / m_FrequencyY;
NOISE_DATATYPE AddHeight = (y - m_MidPoint) / 20;
AddHeight *= AddHeight * AddHeight;
NOISE_DATATYPE * CurFloor = &(m_NoiseArray[y * 17 * 17]);
for (int z = 0; z < 17; z += UPSCALE_Z)
{
NOISE_DATATYPE NoiseZ = ((NOISE_DATATYPE)(a_ChunkZ * cChunkDef::Width + z)) / m_FrequencyZ;
for (int x = 0; x < 17; x += UPSCALE_X)
{
NOISE_DATATYPE NoiseX = ((NOISE_DATATYPE)(a_ChunkX * cChunkDef::Width + x)) / m_FrequencyX;
CurFloor[x + 17 * z] =
m_Noise1.CubicNoise3D(NoiseX, NoiseY, NoiseZ) * (NOISE_DATATYPE)0.5 +
m_Noise2.CubicNoise3D(NoiseX / 2, NoiseY / 2, NoiseZ / 2) +
m_Noise3.CubicNoise3D(NoiseX / 4, NoiseY / 4, NoiseZ / 4) * 2 +
AddHeight / Height[x + 17 * z];
}
}
// Linear-interpolate this XZ floor:
LinearUpscale2DArrayInPlace(CurFloor, 17, 17, UPSCALE_X, UPSCALE_Z);
}
// Finish the 3D linear interpolation by interpolating between each XZ-floors on the Y axis
for (int y = 1; y < cChunkDef::Height; y++)
{
if ((y % UPSCALE_Y) == 0)
{
// This is the interpolation source floor, already calculated
continue;
}
int LoFloorY = (y / UPSCALE_Y) * UPSCALE_Y;
int HiFloorY = LoFloorY + UPSCALE_Y;
NOISE_DATATYPE * LoFloor = &(m_NoiseArray[LoFloorY * 17 * 17]);
NOISE_DATATYPE * HiFloor = &(m_NoiseArray[HiFloorY * 17 * 17]);
NOISE_DATATYPE * CurFloor = &(m_NoiseArray[y * 17 * 17]);
NOISE_DATATYPE Ratio = ((NOISE_DATATYPE)(y % UPSCALE_Y)) / UPSCALE_Y;
int idx = 0;
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
CurFloor[idx] = LoFloor[idx] + (HiFloor[idx] - LoFloor[idx]) * Ratio;
idx += 1;
}
idx += 1; // Skipping one X column
}
}
// The noise array is now fully interpolated
/*
// DEBUG: Output two images of the array, sliced by XY and XZ:
cFile f1;
if (f1.Open(Printf("Chunk_%d_%d_XY.raw", a_ChunkX, a_ChunkZ), cFile::fmWrite))
{
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
int idx = y * 17 * 17 + z * 17;
unsigned char buf[16];
for (int x = 0; x < cChunkDef::Width; x++)
{
buf[x] = (unsigned char)(std::min(256, std::max(0, (int)(128 + 128 * m_Noise[idx++]))));
}
f1.Write(buf, 16);
} // for y
} // for z
} // if (XY file open)
cFile f2;
if (f2.Open(Printf("Chunk_%d_%d_XZ.raw", a_ChunkX, a_ChunkZ), cFile::fmWrite))
{
for (int y = 0; y < cChunkDef::Height; y++)
{
for (int z = 0; z < cChunkDef::Width; z++)
{
int idx = y * 17 * 17 + z * 17;
unsigned char buf[16];
for (int x = 0; x < cChunkDef::Width; x++)
{
buf[x] = (unsigned char)(std::min(256, std::max(0, (int)(128 + 128 * m_Noise[idx++]))));
}
f2.Write(buf, 16);
} // for z
} // for y
} // if (XZ file open)
*/
}
void cNoise3DComposable::GenHeightMap(int a_ChunkX, int a_ChunkZ, cChunkDef::HeightMap & a_HeightMap)
{
GenerateNoiseArrayIfNeeded(a_ChunkX, a_ChunkZ);
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
cChunkDef::SetHeight(a_HeightMap, x, z, m_SeaLevel);
for (int y = cChunkDef::Height - 1; y > m_SeaLevel; y--)
{
if (m_NoiseArray[y * 17 * 17 + z * 17 + x] <= m_AirThreshold)
{
cChunkDef::SetHeight(a_HeightMap, x, z, y);
break;
}
} // for y
} // for x
} // for z
}
void cNoise3DComposable::ComposeTerrain(cChunkDesc & a_ChunkDesc)
{
GenerateNoiseArrayIfNeeded(a_ChunkDesc.GetChunkX(), a_ChunkDesc.GetChunkZ());
a_ChunkDesc.FillBlocks(E_BLOCK_AIR, 0);
// Make basic terrain composition:
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
int LastAir = a_ChunkDesc.GetHeight(x, z) + 1;
bool HasHadWater = false;
for (int y = LastAir; y < m_SeaLevel; y++)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_STATIONARY_WATER);
}
for (int y = LastAir - 1; y > 0; y--)
{
if (m_NoiseArray[x + 17 * z + 17 * 17 * y] > m_AirThreshold)
{
// "air" part
LastAir = y;
if (y < m_SeaLevel)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_STATIONARY_WATER);
HasHadWater = true;
}
continue;
}
// "ground" part:
if (LastAir - y > 4)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_STONE);
continue;
}
if (HasHadWater)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_SAND);
}
else
{
a_ChunkDesc.SetBlockType(x, y, z, (LastAir == y + 1) ? E_BLOCK_GRASS : E_BLOCK_DIRT);
}
} // for y
a_ChunkDesc.SetBlockType(x, 0, z, E_BLOCK_BEDROCK);
} // for x
} // for z
}