Update
This commit is contained in:
parent
24c29ad273
commit
bf9517f266
@ -362,7 +362,8 @@ Proof.
|
|||||||
rewrite seq_length. assumption. rewrite H6. rewrite seq_nth.
|
rewrite seq_length. assumption. rewrite H6. rewrite seq_nth.
|
||||||
reflexivity. apply Nat.lt_succ_diag_r.
|
reflexivity. apply Nat.lt_succ_diag_r.
|
||||||
|
|
||||||
assert (N: In a (a::s)). apply in_eq. apply K in N.
|
assert (N: In a (a::s)). apply in_eq. apply K in N. assert (M := N).
|
||||||
|
apply H5 in N. destruct N.
|
||||||
|
|
||||||
rewrite nth_error_nth' with (d := x).
|
rewrite nth_error_nth' with (d := x).
|
||||||
replace (nth_error (map (fun e : nat => nth (g e) base x)
|
replace (nth_error (map (fun e : nat => nth (g e) base x)
|
||||||
@ -376,17 +377,30 @@ Proof.
|
|||||||
-> n < m -> g' (nth (f' n) (seq 0 m) 0) = n).
|
-> n < m -> g' (nth (f' n) (seq 0 m) 0) = n).
|
||||||
intros m n f' g'. intros J J1 J2 J3.
|
intros m n f' g'. intros J J1 J2 J3.
|
||||||
|
|
||||||
rewrite H6. apply J2 in J3. destruct J3. apply H7. apply J. assumption.
|
rewrite H6. apply J2 in J3. destruct J3. apply H9. apply J. assumption.
|
||||||
|
|
||||||
rewrite H6. apply H5 in N. destruct N. rewrite H8. reflexivity.
|
rewrite H6. rewrite H7. reflexivity. apply H2. assumption. rewrite H6.
|
||||||
apply H2. assumption. rewrite H6. apply H5 in N. destruct N.
|
|
||||||
|
|
||||||
symmetry. rewrite map_nth_error with (d := f a). reflexivity.
|
symmetry. rewrite map_nth_error with (d := f a). reflexivity.
|
||||||
|
|
||||||
rewrite nth_error_nth' with (d := 0). rewrite H6. reflexivity.
|
rewrite nth_error_nth' with (d := 0). rewrite H6. reflexivity.
|
||||||
|
apply H2. assumption. rewrite seq_length. apply H2. assumption.
|
||||||
|
apply H2. assumption. assumption. intro y. intro G. apply K.
|
||||||
|
apply in_cons. assumption.
|
||||||
|
|
||||||
|
replace (map (fun e : nat => nth e base x) (map g (seq 0 (length base))))
|
||||||
|
with (map (fun z => (fun e => nth e base x) (g z)) (seq 0 (length base))).
|
||||||
|
apply H6.
|
||||||
|
|
||||||
|
assert (forall w (u v: list X),
|
||||||
|
map Some u = map (nth_error v) w -> (forall y, In y w -> y < length v)).
|
||||||
|
intro w; induction w; intros u0 v0; intro J; intro y; intro J1.
|
||||||
|
contradiction. destruct u0. inversion J.
|
||||||
|
|
||||||
|
apply in_inv in J1. destruct J1. rewrite <- H7.
|
||||||
|
inversion J. apply nth_error_Some. rewrite <- H9. easy.
|
||||||
|
apply IHw with (u := u0). inversion J. reflexivity. assumption.
|
||||||
|
apply H7 with (u := x::u). assumption.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user