From bf9517f266e6715b7b2a570c51a0167909ae830c Mon Sep 17 00:00:00 2001 From: Thomas Baruchel Date: Mon, 4 Dec 2023 12:03:51 +0100 Subject: [PATCH] Update --- src/mapping.v | 22 ++++++++++++++++++---- 1 file changed, 18 insertions(+), 4 deletions(-) diff --git a/src/mapping.v b/src/mapping.v index 2239026..48a53ca 100644 --- a/src/mapping.v +++ b/src/mapping.v @@ -362,7 +362,8 @@ Proof. rewrite seq_length. assumption. rewrite H6. rewrite seq_nth. reflexivity. apply Nat.lt_succ_diag_r. - assert (N: In a (a::s)). apply in_eq. apply K in N. + assert (N: In a (a::s)). apply in_eq. apply K in N. assert (M := N). + apply H5 in N. destruct N. rewrite nth_error_nth' with (d := x). replace (nth_error (map (fun e : nat => nth (g e) base x) @@ -376,17 +377,30 @@ Proof. -> n < m -> g' (nth (f' n) (seq 0 m) 0) = n). intros m n f' g'. intros J J1 J2 J3. - rewrite H6. apply J2 in J3. destruct J3. apply H7. apply J. assumption. + rewrite H6. apply J2 in J3. destruct J3. apply H9. apply J. assumption. - rewrite H6. apply H5 in N. destruct N. rewrite H8. reflexivity. - apply H2. assumption. rewrite H6. apply H5 in N. destruct N. + rewrite H6. rewrite H7. reflexivity. apply H2. assumption. rewrite H6. symmetry. rewrite map_nth_error with (d := f a). reflexivity. rewrite nth_error_nth' with (d := 0). rewrite H6. reflexivity. + apply H2. assumption. rewrite seq_length. apply H2. assumption. + apply H2. assumption. assumption. intro y. intro G. apply K. + apply in_cons. assumption. + replace (map (fun e : nat => nth e base x) (map g (seq 0 (length base)))) + with (map (fun z => (fun e => nth e base x) (g z)) (seq 0 (length base))). + apply H6. + assert (forall w (u v: list X), + map Some u = map (nth_error v) w -> (forall y, In y w -> y < length v)). + intro w; induction w; intros u0 v0; intro J; intro y; intro J1. + contradiction. destruct u0. inversion J. + apply in_inv in J1. destruct J1. rewrite <- H7. + inversion J. apply nth_error_Some. rewrite <- H9. easy. + apply IHw with (u := u0). inversion J. reflexivity. assumption. + apply H7 with (u := x::u). assumption.