Update
This commit is contained in:
parent
2315f2321e
commit
3e92621520
@ -726,15 +726,6 @@ Theorem subsequence_filter_2 {X: Type} :
|
|||||||
forall (u v: list X) f,
|
forall (u v: list X) f,
|
||||||
subsequence u v -> subsequence (filter f u) (filter f v).
|
subsequence u v -> subsequence (filter f u) (filter f v).
|
||||||
Proof.
|
Proof.
|
||||||
(*
|
|
||||||
intro u. induction u; intros v f; intro H.
|
|
||||||
assert (v = nil). destruct v. reflexivity.
|
|
||||||
apply subsequence_eq_def_1 in H. apply subsequence_eq_def_2 in H.
|
|
||||||
destruct H. destruct H. destruct H.
|
|
||||||
destruct x0; apply nil_cons in H; contradiction.
|
|
||||||
rewrite H0. apply subsequence_nil_r.
|
|
||||||
simpl. destruct (f a).
|
|
||||||
*)
|
|
||||||
intros u v. generalize u. induction v; intros u0 f; intro H.
|
intros u v. generalize u. induction v; intros u0 f; intro H.
|
||||||
apply subsequence_nil_r.
|
apply subsequence_nil_r.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user