diff --git a/src/subsequences.v b/src/subsequences.v index 99be30e..8263396 100644 --- a/src/subsequences.v +++ b/src/subsequences.v @@ -726,15 +726,6 @@ Theorem subsequence_filter_2 {X: Type} : forall (u v: list X) f, subsequence u v -> subsequence (filter f u) (filter f v). Proof. - (* - intro u. induction u; intros v f; intro H. - assert (v = nil). destruct v. reflexivity. - apply subsequence_eq_def_1 in H. apply subsequence_eq_def_2 in H. - destruct H. destruct H. destruct H. - destruct x0; apply nil_cons in H; contradiction. - rewrite H0. apply subsequence_nil_r. - simpl. destruct (f a). - *) intros u v. generalize u. induction v; intros u0 f; intro H. apply subsequence_nil_r.