ubitx-v5x/TeensyDSP/RigState.h

392 lines
11 KiB
C

/*!
* @file RigState.h
*/
#ifndef __RigState_h__
#define __RigState_h__
#include <Arduino.h>
#define UBITX_VFOB_FLAG 0x00000001
#define UBITX_SPLIT_FLAG 0x00000002
#define UBITX_RIT_FLAG 0x00000004
#define UBITX_XIT_FLAG 0x00000008
#define UBITX_CW_FLAG 0x00000010
#define UBITX_USB_FLAG 0x00000020
#define UBITX_TX_FLAG 0x00000040
#define UBITX_SIDETONE_MASK 0x000007FF
#define UBITX_KEYER_MODE_MASK 0x00003800
#ifdef TEENSYDUINO
#define DISABLEINTS(CMD) do { noInterrupts(); CMD; interrupts(); } while (0)
#else
#define DISABLEINTS(CMD) do { CMD; } while (0)
#endif
enum RigStateWord {
DIRTY_WORD = 0,
VFOA_WORD,
VFOB_WORD,
OFFSETS_WORD,
FLAGS_WORD,
KEYER_WORD,
NUM_WORDS
};
inline RigStateWord& operator++(RigStateWord& orig) {
orig = static_cast<RigStateWord>(orig + 1);
// NOTE: Will overflow...
return orig;
}
inline RigStateWord operator++(RigStateWord& orig, int) {
RigStateWord rVal = orig;
++orig;
return rVal;
}
struct UBitxRigState {
volatile uint32_t data[NUM_WORDS] = {0};
void begin();
void send_RIGINF();
void receive_RIGINF(int numBytes = sizeof(data));
/*!
* @brief Set the dirty bit for the specified word.
*
* @param w
* The word to mark as dirty.
*/
inline void setDirty(RigStateWord w) {
data[DIRTY_WORD] |= w < NUM_WORDS ? 1 << w : 0;
}
/*!
* @brief Set the dirty bits for all words.
*/
inline void setDirty() { DISABLEINTS( data[DIRTY_WORD] = 0xFFFFFFFF ); }
/*!
* @brief Clear the dirty bit for the specified word.
*
* @param w
* The word to mark as clean.
*/
inline void setClean(RigStateWord w) {
data[DIRTY_WORD] &= ~(w < NUM_WORDS ? 1 << w : 0);
}
/*!
* @brief Clear the dirty bits for all words.
*/
inline void setClean() { DISABLEINTS( data[DIRTY_WORD] = 0 ); }
/*!
* @brief Check whether the specified word is clean.
*
* @param w
* The word to check for clean status.
*
* @return True if the word is clean.
*/
inline bool isClean(RigStateWord w) {
bool clean;
DISABLEINTS( clean = ((1 << w) & data[DIRTY_WORD]) > 0 ? false : true );
return clean;
}
/*!
* @brief Check whether the data is clean (as a whole).
*
* @return True if the data is clean (no dirty fields).
*/
inline bool isClean() {
bool clean;
DISABLEINTS( clean = data[DIRTY_WORD] == 0 );
return clean;
}
/*!
* @brief Check whether the specified word is dirty.
*
* @param w
* The word to check for dirty status.
*
* @return True if the word is dirty.
*/
inline bool isDirty(RigStateWord w) {
bool dirty;
DISABLEINTS( dirty = ((1 << w) & data[DIRTY_WORD]) > 0 ? true : false );
return dirty;
}
/*!
* @brief Check whether the data is dirty (as a whole).
*
* @return True if the data is dirty (at least one dirty field).
*/
inline bool isDirty() {
bool dirty;
DISABLEINTS( dirty = data[DIRTY_WORD] != 0 );
return dirty;
}
/*!
* @brief Set the VFO A frequency.
*
* @param freq
* The new frequency in Hz.
*/
inline void setFreqA(uint32_t freq, bool mark = true) {
DISABLEINTS( data[VFOA_WORD] = freq;
if (mark) setDirty(VFOA_WORD) );
}
inline uint32_t getFreqA() const {
uint32_t result;
DISABLEINTS( result = data[VFOA_WORD] );
return result;
}
/*!
* @brief Set the VFO B frequency.
*
* @param freq
* The new frequency in Hz.
*/
inline void setFreqB(uint32_t freq, bool mark = true) {
DISABLEINTS( data[VFOB_WORD] = freq );
}
inline uint32_t getFreqB() const {
uint32_t result;
DISABLEINTS( result = data[VFOB_WORD] );
return result;
}
inline void setRIT(int16_t offset, bool mark = true) {
DISABLEINTS( data[OFFSETS_WORD] = (int32_t(offset) << 16) | (0x0000FFFF & data[OFFSETS_WORD]);
if (mark) setDirty(OFFSETS_WORD) );
}
inline int16_t getRIT() const {
int16_t result;
DISABLEINTS( result = data[OFFSETS_WORD] >> 16 );
return result;
}
inline void setXIT(int16_t offset, bool mark = true) {
DISABLEINTS( data[OFFSETS_WORD] = (0xFFFF0000 & data[OFFSETS_WORD]) | offset;
if (mark) setDirty(OFFSETS_WORD) );
}
inline int16_t getXIT() const {
int16_t result;
DISABLEINTS( result = 0x0000FFFF & data[OFFSETS_WORD] );
return result;
}
inline void setVFOA(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_VFOB_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setVFOB(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_VFOB_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isVFOA() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_VFOB_FLAG ? false : true );
return result;
}
inline bool isVFOB() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_VFOB_FLAG ? true : false );
return result;
}
inline void setSplitOn(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_SPLIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setSplitOff(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_SPLIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isSplit() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_SPLIT_FLAG ? true : false );
return result;
}
inline void setRITOn(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_RIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setRITOff(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_RIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isRIT() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_RIT_FLAG ? true : false );
return result;
}
inline void setXITOn(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_XIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setXITOff(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_XIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isXIT() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_XIT_FLAG ? true : false );
return result;
}
inline void setModeUSB(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_USB_FLAG;
data[FLAGS_WORD] &= ~UBITX_CW_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setModeLSB(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_USB_FLAG;
data[FLAGS_WORD] &= ~UBITX_CW_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setModeCW(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_USB_FLAG;
data[FLAGS_WORD] |= UBITX_CW_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setModeCWR(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_USB_FLAG;
data[FLAGS_WORD] |= UBITX_CW_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isModeUSB() const {
bool result;
DISABLEINTS( result = ((data[FLAGS_WORD] & UBITX_USB_FLAG) > 0) && ((data[FLAGS_WORD] & UBITX_CW_FLAG) == 0) );
return result;
}
inline bool isModeLSB() const {
bool result;
DISABLEINTS( result = ((data[FLAGS_WORD] & UBITX_USB_FLAG) == 0) && ((data[FLAGS_WORD] & UBITX_CW_FLAG) == 0) );
return result;
}
inline bool isModeCWAny() const {
bool result;
DISABLEINTS( result = (data[FLAGS_WORD] & UBITX_CW_FLAG) > 0 );
return result;
}
inline bool isModeCW() const {
bool result;
DISABLEINTS( result = ((data[FLAGS_WORD] & UBITX_USB_FLAG) > 0) && ((data[FLAGS_WORD] & UBITX_CW_FLAG) > 0) );
return result;
}
inline bool isModeCWR() const {
bool result;
DISABLEINTS( result = ((data[FLAGS_WORD] & UBITX_USB_FLAG) == 0) && ((data[FLAGS_WORD] & UBITX_CW_FLAG) > 0) );
return result;
}
inline void setSidetone(uint16_t f, bool mark = true) {
DISABLEINTS( data[KEYER_WORD] &= ~UBITX_SIDETONE_MASK;
data[KEYER_WORD] |= (uint32_t(f) & UBITX_SIDETONE_MASK);
if (mark) setDirty(KEYER_WORD) );
}
inline uint16_t getSidetone() {
uint32_t result;
DISABLEINTS( result = data[KEYER_WORD] & UBITX_SIDETONE_MASK );
return uint16_t(result);
}
#ifdef DEBUG
void serialHexState(const char* label);
void serialPrettyState(const char* label);
#endif
#ifndef TEENSYDUINO
// These methods are only defined in the Raduino (Arduino) case of the
// RigState, not in the TeensyDSP (Teensy) case.
void writeDirty(); // write fields FROM RigState TO Raduino
void readDirty(); // read variables FROM Raduino TO RigState
#else
// These methods are only defined (currently) in the TeensyDSP case.
void processDirty();
#endif
};
#ifndef TEENSYDUINO
extern UBitxRigState& rigState;
#endif
/*
NOTE: This is all currently OBE, leaving it here for reference/future cleanup.
Protocol discussion:
- I2C master: Raduino
- I2C slave: TeensyDSP
Raduino state:
- Baseline uBITX variables
- I2C buffer
- On I2C transmit: make updates based on current variables
- On I2C receive:
- Update based on received I2C responses
- Update associated variables
TeensyDSP state:
- CAT buffer
- Used to receive command from CAT (when commands arrive via Serial)
- Used to transmit state to Raduino (when requested via Wire1)
- Raduino buffer
- Used to receive state from Raduino (when received via Wire1)
- Used to transmit responses to CAT (over Serial)
- Questions
- How can these be synchronized?
- At the tail end of an I2C request handler. Before sending the response to the Raduino via I2C:
- Copy updated CAT buffer items to the Raduino buffer.
- Copy updated Raduino buffer items to the CAT buffer.
- In the case of conflicts, CAT wins.
- Transmit the CAT buffer state to the Raduino.
- TeensyDSP updates 'outgoing' state based on CAT inputs.
- Make change to data.
- Mark data as dirty, if different than incoming state.
- When requested, Teensy DSP sends 'outgoing' state to Raduino.
- Send dirty data over I2C.
- Mark data as clean.
*/
#endif
/***********************************************************************
* EOF
**********************************************************************/