1497 lines
46 KiB
C++
1497 lines
46 KiB
C++
//Firmware Version
|
|
//+ : This symbol identifies the firmware.
|
|
// It was originally called 'CEC V1.072' but it is too long to waste the LCD window.
|
|
// I do not want to make this Firmware users's uBITX messy with my callsign.
|
|
// Putting one alphabet in front of 'v' has a different meaning.
|
|
// So I put + in the sense that it was improved one by one based on Original Firmware.
|
|
// This firmware has been gradually changed based on the original firmware created by Farhan, Jack, Jerry and others.
|
|
|
|
#define FIRMWARE_VERSION_INFO F("+v1.200")
|
|
#define FIRMWARE_VERSION_NUM 0x04 //1st Complete Project : 1 (Version 1.061), 2st Project : 2, 1.08: 3, 1.09 : 4
|
|
|
|
/**
|
|
Cat Suppoort uBITX CEC Version
|
|
This firmware has been gradually changed based on the original firmware created by Farhan, Jack, Jerry and others.
|
|
Most features(TX, Frequency Range, Ham Band, TX Control, CW delay, start Delay... more) have been added by KD8CEC.
|
|
My wish is to keep the original author's Comment as long as the meaning does not change much, even if the code looks a bit long.
|
|
Ian KD8CEC
|
|
|
|
Original source comment -------------------------------------------------------------
|
|
* This source file is under General Public License version 3.
|
|
*
|
|
* This verision uses a built-in Si5351 library
|
|
* Most source code are meant to be understood by the compilers and the computers.
|
|
* Code that has to be hackable needs to be well understood and properly documented.
|
|
* Donald Knuth coined the term Literate Programming to indicate code that is written be
|
|
* easily read and understood.
|
|
*
|
|
* The Raduino is a small board that includes the Arduin Nano, a 16x2 LCD display and
|
|
* an Si5351a frequency synthesizer. This board is manufactured by Paradigm Ecomm Pvt Ltd
|
|
*
|
|
* To learn more about Arduino you may visit www.arduino.cc.
|
|
*
|
|
* The Arduino works by starts executing the code in a function called setup() and then it
|
|
* repeatedly keeps calling loop() forever. All the initialization code is kept in setup()
|
|
* and code to continuously sense the tuning knob, the function button, transmit/receive,
|
|
* etc is all in the loop() function. If you wish to study the code top down, then scroll
|
|
* to the bottom of this file and read your way up.
|
|
*
|
|
* Below are the libraries to be included for building the Raduino
|
|
* The EEPROM library is used to store settings like the frequency memory, caliberation data,
|
|
* callsign etc .
|
|
*
|
|
* The main chip which generates upto three oscillators of various frequencies in the
|
|
* Raduino is the Si5351a. To learn more about Si5351a you can download the datasheet
|
|
* from www.silabs.com although, strictly speaking it is not a requirment to understand this code.
|
|
* Instead, you can look up the Si5351 library written by xxx, yyy. You can download and
|
|
* install it from www.url.com to complile this file.
|
|
* The Wire.h library is used to talk to the Si5351 and we also declare an instance of
|
|
* Si5351 object to control the clocks.
|
|
*/
|
|
#include <Wire.h>
|
|
#include <EEPROM.h>
|
|
#include "ubitx.h"
|
|
#include "ubitx_eemap.h"
|
|
|
|
/**
|
|
* The uBITX is an upconnversion transceiver. The first IF is at 45 MHz.
|
|
* The first IF frequency is not exactly at 45 Mhz but about 5 khz lower,
|
|
* this shift is due to the loading on the 45 Mhz crystal filter by the matching
|
|
* L-network used on it's either sides.
|
|
* The first oscillator works between 48 Mhz and 75 MHz. The signal is subtracted
|
|
* from the first oscillator to arriive at 45 Mhz IF. Thus, it is inverted : LSB becomes USB
|
|
* and USB becomes LSB.
|
|
* The second IF of 12 Mhz has a ladder crystal filter. If a second oscillator is used at
|
|
* 57 Mhz, the signal is subtracted FROM the oscillator, inverting a second time, and arrives
|
|
* at the 12 Mhz ladder filter thus doouble inversion, keeps the sidebands as they originally were.
|
|
* If the second oscillator is at 33 Mhz, the oscilaltor is subtracated from the signal,
|
|
* thus keeping the signal's sidebands inverted. The USB will become LSB.
|
|
* We use this technique to switch sidebands. This is to avoid placing the lsbCarrier close to
|
|
* 12 MHz where its fifth harmonic beats with the arduino's 16 Mhz oscillator's fourth harmonic
|
|
*/
|
|
|
|
// the second oscillator should ideally be at 57 MHz, however, the crystal filter's center frequency
|
|
// is shifted down a little due to the loading from the impedance matching L-networks on either sides
|
|
|
|
#if UBITX_BOARD_VERSION == 5
|
|
//For Test //45005000
|
|
//#define SECOND_OSC_USB (56064200l)
|
|
//#define SECOND_OSC_LSB (33945800l)
|
|
|
|
/*
|
|
//For Test //4500000
|
|
#define SECOND_OSC_USB (56059200l)
|
|
#define SECOND_OSC_LSB (33940800l)
|
|
*/
|
|
|
|
/*
|
|
//For Test // V1.121 44991500(LSB), 44998500 (USB), abs : 7k
|
|
#define SECOND_OSC_USB (56057700l)
|
|
#define SECOND_OSC_LSB (33932300l)
|
|
*/
|
|
|
|
//==============================================================================================================================
|
|
//For Test // V1.200 V1.122 45002500 (LSB), 45002000 (USB) (Change Default BFO Frequency 11056xxx, adjust bfo and ifshift ), abs: 0.5k
|
|
//Best, Test 3 uBITX V5
|
|
//Last Value, If more data is collected, it can be changed to a better value.
|
|
#define SECOND_OSC_USB (56058700l)
|
|
#define SECOND_OSC_LSB (33945800l)
|
|
|
|
//Not used, Just comment (Default)
|
|
#define INIT_USB_FREQ (11056500l)
|
|
//-----------------------------------------------------------------------------------------------------------------------------
|
|
#else
|
|
#define SECOND_OSC_USB (56995000l)
|
|
#define SECOND_OSC_LSB (32995000l)
|
|
//these are the two default USB and LSB frequencies. The best frequencies depend upon your individual taste and filter shape
|
|
//Not used, Just comment (Default)
|
|
#define INIT_USB_FREQ (11996500l)
|
|
#endif
|
|
|
|
|
|
// limits the tuning and working range of the ubitx between 3 MHz and 30 MHz
|
|
#define LOWEST_FREQ (3000000l)
|
|
#define HIGHEST_FREQ (30000000l)
|
|
|
|
//When the frequency is moved by the dial, the maximum value by KD8CEC
|
|
#define LOWEST_FREQ_DIAL (3000l)
|
|
#define HIGHEST_FREQ_DIAL (60000000l)
|
|
|
|
char ritOn = 0;
|
|
char vfoActive = VFO_A;
|
|
int8_t meter_reading = 0; // a -1 on meter makes it invisible
|
|
unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier, cwmCarrier;
|
|
unsigned long vfoA_eeprom, vfoB_eeprom; //for protect eeprom life
|
|
unsigned long frequency, ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial
|
|
|
|
unsigned int cwSpeed = 100; //this is actuall the dot period in milliseconds
|
|
extern int32_t calibration;
|
|
|
|
//for store the mode in eeprom
|
|
byte vfoA_mode=0, vfoB_mode = 0; //0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM
|
|
byte vfoA_mode_eeprom, vfoB_mode_eeprom; //for protect eeprom life
|
|
|
|
//KD8CEC
|
|
//for AutoSave and protect eeprom life
|
|
byte saveIntervalSec = 10; //second
|
|
unsigned long saveCheckTime = 0;
|
|
unsigned long saveCheckFreq = 0;
|
|
|
|
byte cwDelayTime = 60;
|
|
byte delayBeforeCWStartTime = 50;
|
|
|
|
//sideTonePitch + sideToneSub = sideTone
|
|
byte sideTonePitch=0;
|
|
byte sideToneSub = 0;
|
|
|
|
//DialLock
|
|
byte isDialLock = 0; //000000[0]vfoB [0]vfoA 0Bit : A, 1Bit : B
|
|
byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
|
|
long arTuneStep[5];
|
|
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
|
|
|
|
byte commonOption0 = 0;
|
|
byte displayOption1 = 0;
|
|
byte displayOption2 = 0;
|
|
|
|
//CW ADC Range
|
|
int cwAdcSTFrom = 0;
|
|
int cwAdcSTTo = 0;
|
|
int cwAdcDotFrom = 0;
|
|
int cwAdcDotTo = 0;
|
|
int cwAdcDashFrom = 0;
|
|
int cwAdcDashTo = 0;
|
|
int cwAdcBothFrom = 0;
|
|
int cwAdcBothTo = 0;
|
|
byte cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
|
|
bool Iambic_Key = true;
|
|
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
|
|
unsigned char keyerControl = IAMBICB;
|
|
|
|
byte isShiftDisplayCWFreq = 1; //Display Frequency
|
|
int shiftDisplayAdjustVal = 0; //
|
|
|
|
//Variables for auto cw mode
|
|
byte isCWAutoMode = 0; //0 : none, 1 : CW_AutoMode_Menu_Selection, 2 : CW_AutoMode Sending
|
|
byte cwAutoTextCount = 0; //cwAutoText Count
|
|
byte beforeCWTextIndex = 255; //when auto cw start, always beforeCWTextIndex = 255, (for first time check)
|
|
byte cwAutoDialType = 0; //0 : CW Text Change, 1 : Frequency Tune
|
|
|
|
#define AUTO_CW_RESERVE_MAX 3
|
|
byte autoCWSendReserv[AUTO_CW_RESERVE_MAX]; //Reserve CW Auto Send
|
|
byte autoCWSendReservCount = 0; //Reserve CW Text Cound
|
|
byte sendingCWTextIndex = 0; //cw auto seding Text Index
|
|
|
|
byte userCallsignLength = 0; //7 : display callsign at system startup, 6~0 : callsign length (range : 1~18)
|
|
|
|
/**
|
|
* Raduino needs to keep track of current state of the transceiver. These are a few variables that do it
|
|
*/
|
|
boolean txCAT = false; //turned on if the transmitting due to a CAT command
|
|
char inTx = 0; //it is set to 1 if in transmit mode (whatever the reason : cw, ptt or cat)
|
|
char splitOn = 0; //working split, uses VFO B as the transmit frequency
|
|
char keyDown = 0; //in cw mode, denotes the carrier is being transmitted
|
|
char isUSB = 0; //upper sideband was selected, this is reset to the default for the
|
|
|
|
char cwMode = 0; //compatible original source, and extend mode //if cwMode == 0, mode check : isUSB, cwMode > 0, mode Check : cwMode
|
|
//iscwMode = 0 : ssbmode, 1 :cwl, 2 : cwu, 3 : cwn (none tx)
|
|
|
|
//frequency when it crosses the frequency border of 10 MHz
|
|
byte menuOn = 0; //set to 1 when the menu is being displayed, if a menu item sets it to zero, the menu is exited
|
|
unsigned long cwTimeout = 0; //milliseconds to go before the cw transmit line is released and the radio goes back to rx mode
|
|
unsigned long dbgCount = 0; //not used now
|
|
unsigned char txFilter = 0; //which of the four transmit filters are in use
|
|
boolean modeCalibrate = false;//this mode of menus shows extended menus to calibrate the oscillators and choose the proper
|
|
//beat frequency
|
|
|
|
byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2~Bit3 : dynamic sdr frequency, bit 7: IFTune_Value Reverse for DIY uBITX
|
|
byte attLevel = 0; //ATT : RF Gain Control (Receive) <-- IF1 Shift, 0 : Off, ShiftValue is attLevel * 100; attLevel 150 = 15K
|
|
byte if1TuneValue = 0; //0 : OFF, IF1 + if1TuneValue * 100; // + - 12500;
|
|
byte sdrModeOn = 0; //SDR MODE ON / OFF
|
|
unsigned long SDR_Center_Freq; //
|
|
|
|
unsigned long beforeIdle_ProcessTime = 0; //for check Idle time
|
|
byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle,
|
|
char lcdMeter[17];
|
|
byte sMeterLevels[9];
|
|
|
|
//Current ADC Value for S.Meter, and S Meter Level
|
|
int currentSMeter = 0;
|
|
byte scaledSMeter = 0;
|
|
|
|
byte I2C_LCD_MASTER_ADDRESS; //0x27 //if Set I2C Address by uBITX Manager, read from EEProm
|
|
byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
|
|
|
|
byte KeyValues[16][3];
|
|
|
|
byte isIFShift = 0; //1 = ifShift, 2 extend
|
|
int ifShiftValue = 0; //
|
|
|
|
byte TriggerBySW = 0; //Action Start from Nextion LCD, Other MCU
|
|
|
|
//Use Custom Filter
|
|
//#define CUST_LPF_ENABLED 48
|
|
//#define CUST_LPF_START 49
|
|
char isCustomFilter = 0;
|
|
char isCustomFilter_A7 = 0;
|
|
char CustFilters[7][2];
|
|
|
|
/**
|
|
* Below are the basic functions that control the uBitx. Understanding the functions before
|
|
* you start hacking around
|
|
*/
|
|
|
|
//Ham Band
|
|
#define MAX_LIMIT_RANGE 10 //because limited eeprom size
|
|
byte useHamBandCount = 0; //0 use full range frequency
|
|
byte tuneTXType = 0; //0 : use full range, 1 : just Change Dial speed, 2 : just ham band change, but can general band by tune, 3 : only ham band (just support 0, 2 (0.26 version))
|
|
//100 : use full range but not TX on general band, 101 : just change dial speed but.. 2 : jut... but.. 3 : only ham band (just support 100, 102 (0.26 version))
|
|
unsigned int hamBandRange[MAX_LIMIT_RANGE][2]; // = //Khz because reduce use memory
|
|
|
|
//-1 : not found, 0 ~ 9 : Hamband index
|
|
char getIndexHambanBbyFreq(unsigned long f)
|
|
{
|
|
f = f / 1000;
|
|
for (byte i = 0; i < useHamBandCount; i++)
|
|
if (hamBandRange[i][0] <= f && f < hamBandRange[i][1])
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
//when Band change step = just hamband
|
|
//moveDirection : 1 = next, -1 : prior
|
|
void setNextHamBandFreq(unsigned long f, char moveDirection)
|
|
{
|
|
unsigned long resultFreq = 0;
|
|
byte loadMode = 0;
|
|
char findedIndex = getIndexHambanBbyFreq(f);
|
|
|
|
if (findedIndex == -1) { //out of hamband
|
|
f = f / 1000;
|
|
for (byte i = 0; i < useHamBandCount -1; i++) {
|
|
if (hamBandRange[i][1] <= f && f < hamBandRange[i + 1][0]) {
|
|
findedIndex = i + moveDirection;
|
|
//return (unsigned long)(hamBandRange[i + 1][0]) * 1000;
|
|
}
|
|
} //end of for
|
|
}
|
|
else if (((moveDirection == 1) && (findedIndex < useHamBandCount -1)) || //Next
|
|
((moveDirection == -1) && (findedIndex > 0)) ) { //Prior
|
|
findedIndex += moveDirection;
|
|
}
|
|
else
|
|
findedIndex = -1;
|
|
|
|
if (findedIndex == -1)
|
|
findedIndex = (moveDirection == 1 ? 0 : useHamBandCount -1);
|
|
|
|
EEPROM.get(HAM_BAND_FREQS + 4 * findedIndex, resultFreq);
|
|
|
|
//loadMode = (byte)(resultFreq >> 30);
|
|
//resultFreq = resultFreq & 0x3FFFFFFF;
|
|
loadMode = (byte)(resultFreq >> 29);
|
|
resultFreq = resultFreq & 0x1FFFFFFF;
|
|
|
|
if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1])
|
|
resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000;
|
|
|
|
byteToMode(loadMode, 1);
|
|
setFrequency(resultFreq);
|
|
}
|
|
|
|
void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
|
|
if (bandIndex >= 0)
|
|
//EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x3FFFFFFF) | (mode << 30) );
|
|
EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x1FFFFFFF) | (mode << 29) );
|
|
}
|
|
|
|
/*
|
|
KD8CEC
|
|
When using the basic delay of the Arduino, the program freezes.
|
|
When the delay is used, the program will generate an error because it is not communicating,
|
|
so Create a new delay function that can do background processing.
|
|
*/
|
|
unsigned long delayBeforeTime = 0;
|
|
byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWKey -> Check Paddle
|
|
delayBeforeTime = millis();
|
|
|
|
while (millis() - delayBeforeTime <= delayTime) {
|
|
|
|
if (fromType == 4)
|
|
{
|
|
//CHECK PADDLE
|
|
if (getPaddle() != 0) //Interrupt : Stop cw Auto mode by Paddle -> Change Auto to Manual
|
|
return 1;
|
|
|
|
//Check PTT while auto Sending
|
|
autoSendPTTCheck();
|
|
|
|
Check_Cat(3);
|
|
}
|
|
else
|
|
{
|
|
//Background Work
|
|
Check_Cat(fromType);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Select the properly tx harmonic filters
|
|
* The four harmonic filters use only three relays
|
|
* the four LPFs cover 30-21 Mhz, 18 - 14 Mhz, 7-10 MHz and 3.5 to 5 Mhz
|
|
* Briefly, it works like this,
|
|
* - When KT1 is OFF, the 'off' position routes the PA output through the 30 MHz LPF
|
|
* - When KT1 is ON, it routes the PA output to KT2. Which is why you will see that
|
|
* the KT1 is on for the three other cases.
|
|
* - When the KT1 is ON and KT2 is off, the off position of KT2 routes the PA output
|
|
* to 18 MHz LPF (That also works for 14 Mhz)
|
|
* - When KT1 is On, KT2 is On, it routes the PA output to KT3
|
|
* - KT3, when switched on selects the 7-10 Mhz filter
|
|
* - KT3 when switched off selects the 3.5-5 Mhz filter
|
|
* See the circuit to understand this
|
|
*/
|
|
|
|
void setTXFilters(unsigned long freq){
|
|
#ifdef USE_CUSTOM_LPF_FILTER
|
|
freq = freq / 1000000UL;
|
|
for (byte i = 0; i < 7; i++) {
|
|
if (freq >= CustFilters[i][0])
|
|
{
|
|
char aIn = CustFilters[i][1];
|
|
digitalWrite(TX_LPF_A, aIn & 0x01);
|
|
digitalWrite(TX_LPF_B, aIn & 0x02);
|
|
digitalWrite(TX_LPF_C, aIn & 0x04);
|
|
|
|
if (isCustomFilter_A7 == 1)
|
|
{
|
|
digitalWrite(10, aIn & 0x08);
|
|
digitalWrite(11, aIn & 0x10);
|
|
digitalWrite(12, aIn & 0x20);
|
|
digitalWrite(13, aIn & 0x40);
|
|
}
|
|
return;
|
|
}
|
|
} //end of for
|
|
#else
|
|
|
|
#if UBITX_BOARD_VERSION == 5
|
|
if (freq > 21000000L){ // the default filter is with 35 MHz cut-off
|
|
digitalWrite(TX_LPF_A, 0);
|
|
digitalWrite(TX_LPF_B, 0);
|
|
digitalWrite(TX_LPF_C, 0);
|
|
}
|
|
else if (freq >= 14000000L){ //thrown the KT1 relay on, the 30 MHz LPF is bypassed and the 14-18 MHz LPF is allowd to go through
|
|
digitalWrite(TX_LPF_A, 1);
|
|
digitalWrite(TX_LPF_B, 0);
|
|
digitalWrite(TX_LPF_C, 0);
|
|
}
|
|
else if (freq > 7000000L){
|
|
digitalWrite(TX_LPF_A, 0);
|
|
digitalWrite(TX_LPF_B, 1);
|
|
digitalWrite(TX_LPF_C, 0);
|
|
}
|
|
else {
|
|
digitalWrite(TX_LPF_A, 0);
|
|
digitalWrite(TX_LPF_B, 0);
|
|
digitalWrite(TX_LPF_C, 1);
|
|
}
|
|
#else
|
|
if (freq > 21000000L){ // the default filter is with 35 MHz cut-off
|
|
digitalWrite(TX_LPF_A, 0);
|
|
digitalWrite(TX_LPF_B, 0);
|
|
digitalWrite(TX_LPF_C, 0);
|
|
}
|
|
else if (freq >= 14000000L){ //thrown the KT1 relay on, the 30 MHz LPF is bypassed and the 14-18 MHz LPF is allowd to go through
|
|
digitalWrite(TX_LPF_A, 1);
|
|
digitalWrite(TX_LPF_B, 0);
|
|
digitalWrite(TX_LPF_C, 0);
|
|
}
|
|
else if (freq > 7000000L){
|
|
digitalWrite(TX_LPF_A, 1);
|
|
digitalWrite(TX_LPF_B, 1);
|
|
digitalWrite(TX_LPF_C, 0);
|
|
}
|
|
else {
|
|
digitalWrite(TX_LPF_A, 1);
|
|
digitalWrite(TX_LPF_B, 1);
|
|
digitalWrite(TX_LPF_C, 1);
|
|
}
|
|
#endif
|
|
|
|
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* This is the most frequently called function that configures the
|
|
* radio to a particular frequeny, sideband and sets up the transmit filters
|
|
*
|
|
* The transmit filter relays are powered up only during the tx so they dont
|
|
* draw any current during rx.
|
|
*
|
|
* The carrier oscillator of the detector/modulator is permanently fixed at
|
|
* uppper sideband. The sideband selection is done by placing the second oscillator
|
|
* either 12 Mhz below or above the 45 Mhz signal thereby inverting the sidebands
|
|
* through mixing of the second local oscillator.
|
|
*/
|
|
|
|
void setFrequency(unsigned long f){
|
|
f = (f / arTuneStep[tuneStepIndex -1]) * arTuneStep[tuneStepIndex -1];
|
|
setTXFilters(f);
|
|
|
|
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
|
|
int appliedTuneValue = 0;
|
|
|
|
//applied if tune
|
|
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
|
|
if ((advancedFreqOption1 & 0x01) != 0x00)
|
|
{
|
|
appliedTuneValue = if1TuneValue;
|
|
|
|
//In the LSB state, the optimum reception value was found. To apply to USB, 3Khz decrease is required.
|
|
if (sdrModeOn && (inTx == 0))
|
|
appliedTuneValue -= 15; //decrease 1.55Khz
|
|
|
|
//if (isUSB)
|
|
if (cwMode == 2 || (cwMode == 0 && (isUSB)))
|
|
appliedTuneValue -= 30; //decrease 3Khz
|
|
}
|
|
|
|
//if1Tune RX, TX Enabled, ATT : only RX Mode
|
|
//The IF Tune shall be measured at the LSB. Then, move the 3Khz down for USB.
|
|
long if1AdjustValue = ((inTx == 0) ? (attLevel * 100) : 0) + (appliedTuneValue * 100); //if1Tune RX, TX Enabled, ATT : only RX Mode //5600
|
|
|
|
//for DIY uBITX (custom filter)
|
|
if ((advancedFreqOption1 & 0x80) != 0x00) //Reverse IF Tune (- Value for DIY uBITX)
|
|
if1AdjustValue *= -1;
|
|
|
|
if (sdrModeOn && (inTx == 0)) //IF SDR MODE
|
|
{
|
|
//Fixed Frequency SDR (Default Frequency : 32Mhz, available change sdr Frequency by uBITX Manager)
|
|
//Dynamic Frequency is for SWL without cat
|
|
|
|
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
|
|
long moveFrequency = 0;
|
|
//7 6 5 4 3 2 1 0
|
|
// _ _ <-- SDR Freuqncy Option
|
|
byte sdrOption = (advancedFreqOption1 >> 2) & 0x03;
|
|
|
|
if (sdrOption == 1) // SDR Frequency + frequenc
|
|
{
|
|
//example : offset Freq : 20 Mhz and frequency = 7.080 => 27.080 Mhz
|
|
//example : offset Freq : 0 Mhz and frequency = 7.080 => 7.080 Mhz
|
|
//for available HF, SDR
|
|
moveFrequency = f;
|
|
}
|
|
else if (sdrOption == 2) //Mhz move
|
|
{
|
|
//Offset Frequency + Mhz,
|
|
//Example : Offset Frequency : 30Mhz and current Frequncy is 7.080 => 37.080Mhz
|
|
// Offset Frequency : 30Mhz and current Frequncy is 14.074 => 34.074Mhz
|
|
moveFrequency = (f % 10000000);
|
|
}
|
|
else if (sdrOption == 3) //Khz move
|
|
{
|
|
//Offset Frequency + Khz,
|
|
//Example : Offset Frequency : 30Mhz and current Frequncy is 7.080 => 30.080Mhz
|
|
// Offset Frequency : 30Mhz and current Frequncy is 14.074 => 30.074Mhz
|
|
moveFrequency = (f % 1000000);
|
|
}
|
|
|
|
#if UBITX_BOARD_VERSION == 5
|
|
si5351bx_setfreq(2, 45002000 + if1AdjustValue + f);
|
|
si5351bx_setfreq(1, 45002000
|
|
+ if1AdjustValue
|
|
+ SDR_Center_Freq
|
|
//+ ((advancedFreqOption1 & 0x04) == 0x00 ? 0 : (f % 10000000))
|
|
+ moveFrequency);
|
|
// + 2390); //RTL-SDR Frequency Error, Do not add another SDR because the error is different. V1.3
|
|
#else
|
|
si5351bx_setfreq(2, 44991500 + if1AdjustValue + f);
|
|
si5351bx_setfreq(1, 44991500
|
|
+ if1AdjustValue
|
|
+ SDR_Center_Freq
|
|
//+ ((advancedFreqOption1 & 0x04) == 0x00 ? 0 : (f % 10000000))
|
|
+ moveFrequency );
|
|
//+ 2390); Do not add another SDR because the error is different. V1.3
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
if (cwMode == 1 || (cwMode == 0 && (!isUSB))) //cwl or lsb
|
|
{
|
|
//CWL(cwMode == 1) or LSB (cwMode == 0 && (!isUSB))
|
|
si5351bx_setfreq(2, SECOND_OSC_LSB + if1AdjustValue + appliedCarrier + f);
|
|
si5351bx_setfreq(1, SECOND_OSC_LSB + if1AdjustValue);
|
|
}
|
|
else //cwu or usb
|
|
{
|
|
//CWU (cwMode == 2) or USB (cwMode == 0 and isUSB)
|
|
si5351bx_setfreq(2, SECOND_OSC_USB + if1AdjustValue - appliedCarrier + f);
|
|
si5351bx_setfreq(1, SECOND_OSC_USB + if1AdjustValue);
|
|
}
|
|
}
|
|
|
|
frequency = f;
|
|
}
|
|
|
|
/**
|
|
* startTx is called by the PTT, cw keyer and CAT protocol to
|
|
* put the uBitx in tx mode. It takes care of rit settings, sideband settings
|
|
* Note: In cw mode, doesnt key the radio, only puts it in tx mode
|
|
*/
|
|
void startTx(byte txMode, byte isDisplayUpdate){
|
|
//Check Hamband only TX //Not found Hamband index by now frequency
|
|
if (tuneTXType >= 100 && getIndexHambanBbyFreq(ritOn ? ritTxFrequency : frequency) == -1) {
|
|
//no message
|
|
return;
|
|
}
|
|
|
|
if ((isTxType & 0x01) != 0x01)
|
|
digitalWrite(TX_RX, 1);
|
|
|
|
inTx = 1;
|
|
|
|
if (ritOn){
|
|
//save the current as the rx frequency
|
|
ritRxFrequency = frequency;
|
|
setFrequency(ritTxFrequency);
|
|
}
|
|
else
|
|
{
|
|
if (splitOn == 1)
|
|
{
|
|
FrequencyToVFO(1); //Save current Frequency and Mode to eeprom
|
|
if (vfoActive == VFO_B)
|
|
{
|
|
vfoActive = VFO_A;
|
|
frequency = vfoA;
|
|
byteToMode(vfoA_mode, 0);
|
|
}
|
|
else if (vfoActive == VFO_A)
|
|
{
|
|
vfoActive = VFO_B;
|
|
frequency = vfoB;
|
|
byteToMode(vfoB_mode, 0);
|
|
}
|
|
}
|
|
|
|
setFrequency(frequency);
|
|
} //end of else
|
|
|
|
SetCarrierFreq();
|
|
|
|
if (txMode == TX_CW){
|
|
//turn off the second local oscillator and the bfo
|
|
si5351bx_setfreq(0, 0);
|
|
si5351bx_setfreq(1, 0);
|
|
|
|
//shif the first oscillator to the tx frequency directly
|
|
//the key up and key down will toggle the carrier unbalancing
|
|
//the exact cw frequency is the tuned frequency + sidetone
|
|
|
|
if (cwMode == 0)
|
|
{
|
|
if (isUSB)
|
|
si5351bx_setfreq(2, frequency + sideTone);
|
|
else
|
|
si5351bx_setfreq(2, frequency - sideTone);
|
|
}
|
|
else if (cwMode == 1) //CWL
|
|
{
|
|
si5351bx_setfreq(2, frequency - sideTone);
|
|
}
|
|
else //CWU
|
|
{
|
|
si5351bx_setfreq(2, frequency + sideTone);
|
|
}
|
|
}
|
|
|
|
//reduce latency time when begin of CW mode
|
|
if (isDisplayUpdate == 1)
|
|
updateDisplay();
|
|
}
|
|
|
|
void stopTx(void){
|
|
inTx = 0;
|
|
|
|
digitalWrite(TX_RX, 0); //turn off the tx
|
|
SetCarrierFreq();
|
|
|
|
if (ritOn)
|
|
setFrequency(ritRxFrequency);
|
|
else
|
|
{
|
|
if (splitOn == 1) {
|
|
//vfo Change
|
|
if (vfoActive == VFO_B){
|
|
vfoActive = VFO_A;
|
|
frequency = vfoA;
|
|
byteToMode(vfoA_mode, 0);
|
|
}
|
|
else if (vfoActive == VFO_A){
|
|
vfoActive = VFO_B;
|
|
frequency = vfoB;
|
|
byteToMode(vfoB_mode, 0);
|
|
}
|
|
}
|
|
|
|
setFrequency(frequency);
|
|
} //end of else
|
|
|
|
updateDisplay();
|
|
}
|
|
|
|
/**
|
|
* ritEnable is called with a frequency parameter that determines
|
|
* what the tx frequency will be
|
|
*/
|
|
void ritEnable(unsigned long f){
|
|
ritOn = 1;
|
|
//save the non-rit frequency back into the VFO memory
|
|
//as RIT is a temporary shift, this is not saved to EEPROM
|
|
ritTxFrequency = f;
|
|
}
|
|
|
|
// this is called by the RIT menu routine
|
|
void ritDisable(){
|
|
if (ritOn){
|
|
ritOn = 0;
|
|
setFrequency(ritTxFrequency);
|
|
updateDisplay();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Basic User Interface Routines. These check the front panel for any activity
|
|
*/
|
|
|
|
/**
|
|
* The PTT is checked only if we are not already in a cw transmit session
|
|
* If the PTT is pressed, we shift to the ritbase if the rit was on
|
|
* flip the T/R line to T and update the display to denote transmission
|
|
*/
|
|
|
|
void checkPTT(){
|
|
//we don't check for ptt when transmitting cw
|
|
if (cwTimeout > 0)
|
|
return;
|
|
|
|
if (digitalRead(PTT) == 0 && inTx == 0){
|
|
startTx(TX_SSB, 1);
|
|
delay(50); //debounce the PTT
|
|
}
|
|
|
|
if (digitalRead(PTT) == 1 && inTx == 1)
|
|
stopTx();
|
|
}
|
|
#ifdef EXTEND_KEY_GROUP1
|
|
void checkButton(){
|
|
char currentBandIndex = -1;
|
|
|
|
//only if the button is pressed
|
|
int keyStatus = getBtnStatus();
|
|
if (keyStatus == -1)
|
|
return;
|
|
|
|
delay(50);
|
|
keyStatus = getBtnStatus(); //will be remove 3 lines
|
|
if (keyStatus == -1)
|
|
return;
|
|
|
|
if (keyStatus == FKEY_PRESS) //Menu Key
|
|
{
|
|
//for touch screen
|
|
#ifdef USE_SW_SERIAL
|
|
SetSWActivePage(1);
|
|
doMenu();
|
|
|
|
if (isCWAutoMode == 0)
|
|
SetSWActivePage(0);
|
|
#else
|
|
doMenu();
|
|
#endif
|
|
}
|
|
else if (keyStatus <= FKEY_TYPE_MAX) //EXTEND KEY GROUP #1
|
|
{
|
|
|
|
switch(keyStatus)
|
|
{
|
|
case FKEY_MODE :
|
|
if (cwMode == 1)
|
|
{
|
|
cwMode = 2;
|
|
}
|
|
else if (cwMode == 2)
|
|
{
|
|
cwMode = 0;
|
|
isUSB = 0;
|
|
}
|
|
else if (isUSB == 0)
|
|
{
|
|
isUSB = 1;
|
|
}
|
|
else
|
|
{
|
|
cwMode = 1;
|
|
}
|
|
break;
|
|
case FKEY_BANDUP :
|
|
case FKEY_BANDDOWN :
|
|
//Save Band Information
|
|
if (tuneTXType == 2 || tuneTXType == 3 || tuneTXType == 102 || tuneTXType == 103) { //only ham band move
|
|
currentBandIndex = getIndexHambanBbyFreq(frequency);
|
|
|
|
if (currentBandIndex >= 0) {
|
|
saveBandFreqByIndex(frequency, modeToByte(), currentBandIndex);
|
|
}
|
|
}
|
|
setNextHamBandFreq(frequency, keyStatus == FKEY_BANDDOWN ? -1 : 1); //Prior Band
|
|
break;
|
|
|
|
case FKEY_STEP :
|
|
if (++tuneStepIndex > 5)
|
|
tuneStepIndex = 1;
|
|
|
|
EEPROM.put(TUNING_STEP, tuneStepIndex);
|
|
printLine2ClearAndUpdate();
|
|
break;
|
|
|
|
case FKEY_VFOCHANGE :
|
|
menuVfoToggle(1); //Vfo Toggle
|
|
break;
|
|
|
|
case FKEY_SPLIT :
|
|
menuSplitOnOff(1);
|
|
break;
|
|
case FKEY_TXOFF:
|
|
menuTxOnOff(1, 0x01);
|
|
break;
|
|
case FKEY_SDRMODE :
|
|
menuSDROnOff(1);
|
|
break;
|
|
case FKEY_RIT :
|
|
menuRitToggle(1);
|
|
break;
|
|
}
|
|
|
|
FrequencyToVFO(1);
|
|
SetCarrierFreq();
|
|
setFrequency(frequency);
|
|
//delay_background(delayTime, 0);
|
|
updateDisplay();
|
|
}
|
|
|
|
//wait for the button to go up again
|
|
while(keyStatus == getBtnStatus()) {
|
|
delay(10);
|
|
Check_Cat(0);
|
|
}
|
|
//delay(50);//debounce
|
|
}
|
|
|
|
#else
|
|
void checkButton(){
|
|
//only if the button is pressed
|
|
if (!btnDown())
|
|
return;
|
|
delay(50);
|
|
if (!btnDown()) //debounce
|
|
return;
|
|
|
|
doMenu();
|
|
|
|
//wait for the button to go up again
|
|
while(btnDown()) {
|
|
delay(10);
|
|
Check_Cat(0);
|
|
}
|
|
//delay(50);//debounce
|
|
}
|
|
#endif
|
|
|
|
/************************************
|
|
Replace function by KD8CEC
|
|
prevent error controls
|
|
applied Threshold for reduct errors, dial Lock, dynamic Step
|
|
*************************************/
|
|
byte threshold = 2; //noe action for count
|
|
unsigned long lastEncInputtime = 0;
|
|
int encodedSumValue = 0;
|
|
unsigned long lastTunetime = 0; //if continous moving, skip threshold processing
|
|
byte lastMovedirection = 0; //0 : stop, 1 : cw, 2 : ccw
|
|
|
|
//#define skipThresholdTime 70
|
|
#define encodeTimeOut 1000
|
|
|
|
void doTuningWithThresHold(){
|
|
int s = 0;
|
|
unsigned long prev_freq;
|
|
|
|
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
|
|
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02)))
|
|
return;
|
|
|
|
s = enc_read();
|
|
|
|
//if time is exceeded, it is recognized as an error,
|
|
//ignore exists values, because of errors
|
|
if (s == 0) {
|
|
if (encodedSumValue != 0 && (millis() - encodeTimeOut) > lastEncInputtime)
|
|
encodedSumValue = 0;
|
|
|
|
lastMovedirection = 0;
|
|
return;
|
|
}
|
|
lastEncInputtime = millis();
|
|
|
|
//for check moving direction
|
|
encodedSumValue += (s > 0 ? 1 : -1);
|
|
|
|
//check threshold and operator actions (hold dial speed = continous moving, skip threshold check)
|
|
//not use continues changing by Threshold
|
|
//if ((lastTunetime < (millis() - skipThresholdTime)) && ((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
|
|
if (((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
|
|
return;
|
|
|
|
lastTunetime = millis();
|
|
|
|
//Valid Action without noise
|
|
encodedSumValue = 0;
|
|
|
|
prev_freq = frequency;
|
|
//incdecValue = tuningStep * s;
|
|
//frequency += (arTuneStep[tuneStepIndex -1] * s * (s * s < 10 ? 1 : 3)); //appield weight (s is speed)
|
|
frequency += (arTuneStep[tuneStepIndex -1] * s); //appield weight (s is speed) //if want need more increase size, change step size
|
|
|
|
if (prev_freq < 10000000l && frequency > 10000000l)
|
|
isUSB = true;
|
|
|
|
if (prev_freq > 10000000l && frequency < 10000000l)
|
|
isUSB = false;
|
|
|
|
setFrequency(frequency);
|
|
updateDisplay();
|
|
}
|
|
|
|
/**
|
|
* RIT only steps back and forth by 100 hz at a time
|
|
*/
|
|
void doRIT(){
|
|
int knob = enc_read();
|
|
unsigned long old_freq = frequency;
|
|
|
|
if (knob < 0)
|
|
frequency -= (arTuneStep[tuneStepIndex -1]); //
|
|
else if (knob > 0)
|
|
frequency += (arTuneStep[tuneStepIndex -1]); //
|
|
|
|
if (old_freq != frequency){
|
|
setFrequency(frequency);
|
|
updateDisplay();
|
|
}
|
|
}
|
|
|
|
/*
|
|
save Frequency and mode to eeprom for Auto Save with protected eeprom cycle, by kd8cec
|
|
*/
|
|
void storeFrequencyAndMode(byte saveType)
|
|
{
|
|
//freqType : 0 Both (vfoA and vfoB), 1 : vfoA, 2 : vfoB
|
|
if (saveType == 0 || saveType == 1) //vfoA
|
|
{
|
|
if (vfoA != vfoA_eeprom) {
|
|
EEPROM.put(VFO_A, vfoA);
|
|
vfoA_eeprom = vfoA;
|
|
}
|
|
|
|
if (vfoA_mode != vfoA_mode_eeprom) {
|
|
EEPROM.put(VFO_A_MODE, vfoA_mode);
|
|
vfoA_mode_eeprom = vfoA_mode;
|
|
}
|
|
}
|
|
|
|
if (saveType == 0 || saveType == 2) //vfoB
|
|
{
|
|
if (vfoB != vfoB_eeprom) {
|
|
EEPROM.put(VFO_B, vfoB);
|
|
vfoB_eeprom = vfoB;
|
|
}
|
|
|
|
if (vfoB_mode != vfoB_mode_eeprom) {
|
|
EEPROM.put(VFO_B_MODE, vfoB_mode);
|
|
vfoB_mode_eeprom = vfoB_mode;
|
|
}
|
|
}
|
|
}
|
|
|
|
//calculate step size from 1 byte, compatible uBITX Manager, by KD8CEC
|
|
unsigned int byteToSteps(byte srcByte) {
|
|
byte powerVal = (byte)(srcByte >> 6);
|
|
unsigned int baseVal = srcByte & 0x3F;
|
|
|
|
if (powerVal == 1)
|
|
return baseVal * 10;
|
|
else if (powerVal == 2)
|
|
return baseVal * 100;
|
|
else if (powerVal == 3)
|
|
return baseVal * 1000;
|
|
else
|
|
return baseVal;
|
|
}
|
|
|
|
|
|
/**
|
|
* The settings are read from EEPROM. The first time around, the values may not be
|
|
* present or out of range, in this case, some intelligent defaults are copied into the
|
|
* variables.
|
|
*/
|
|
void initSettings(){
|
|
//read the settings from the eeprom and restore them
|
|
//if the readings are off, then set defaults
|
|
//for original source Section ===========================
|
|
EEPROM.get(MASTER_CAL, calibration);
|
|
EEPROM.get(USB_CAL, usbCarrier);
|
|
EEPROM.get(VFO_A, vfoA);
|
|
EEPROM.get(VFO_B, vfoB);
|
|
EEPROM.get(CW_SIDETONE, sideTone);
|
|
EEPROM.get(CW_SPEED, cwSpeed);
|
|
//End of original code
|
|
|
|
//----------------------------------------------------------------
|
|
//Add Lines by KD8CEC
|
|
//for custom source Section =============================
|
|
//ID & Version Check from EEProm
|
|
//if found different firmware, erase eeprom (32
|
|
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
|
|
if (EEPROM.read(FIRMWAR_ID_ADDR) != 0x59 ||
|
|
EEPROM.read(FIRMWAR_ID_ADDR + 1) != 0x58 ||
|
|
EEPROM.read(FIRMWAR_ID_ADDR + 2) != 0x68 ) {
|
|
|
|
printLineF(1, F("Init EEProm..."));
|
|
//initial all eeprom
|
|
for (unsigned int i = 64; i < 1024; i++) //protect Master_cal, usb_cal
|
|
EEPROM.write(i, 0);
|
|
|
|
//Write Firmware ID
|
|
EEPROM.write(FIRMWAR_ID_ADDR, 0x59);
|
|
EEPROM.write(FIRMWAR_ID_ADDR + 1, 0x58);
|
|
EEPROM.write(FIRMWAR_ID_ADDR + 2, 0x68);
|
|
}
|
|
|
|
//Version Write for Memory Management Software
|
|
if (EEPROM.read(VERSION_ADDRESS) != FIRMWARE_VERSION_NUM)
|
|
EEPROM.write(VERSION_ADDRESS, FIRMWARE_VERSION_NUM);
|
|
|
|
//SI5351 I2C Address
|
|
//I2C_ADDR_SI5351
|
|
SI5351BX_ADDR = EEPROM.read(I2C_ADDR_SI5351);
|
|
if (SI5351BX_ADDR < 0x10 || SI5351BX_ADDR > 0xF0)
|
|
{
|
|
SI5351BX_ADDR = 0x60;
|
|
}
|
|
|
|
|
|
//Backup Calibration Setting from Factory Setup
|
|
//Check Factory Setting Backup Y/N
|
|
if (EEPROM.read(FACTORY_BACKUP_YN) != 0x13) {
|
|
EEPROM.write(FACTORY_BACKUP_YN, 0x13); //Set Backup Y/N
|
|
|
|
for (unsigned int i = 0; i < 32; i++) //factory setting range
|
|
EEPROM.write(FACTORY_VALUES + i, EEPROM.read(i)); //0~31 => 65~96
|
|
}
|
|
|
|
EEPROM.get(CW_CAL, cwmCarrier);
|
|
|
|
//for Save VFO_A_MODE to eeprom
|
|
//0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM
|
|
EEPROM.get(VFO_A_MODE, vfoA_mode);
|
|
EEPROM.get(VFO_B_MODE, vfoB_mode);
|
|
|
|
//CW DelayTime
|
|
EEPROM.get(CW_DELAY, cwDelayTime);
|
|
|
|
//CW interval between TX and CW Start
|
|
EEPROM.get(CW_START, delayBeforeCWStartTime);
|
|
EEPROM.get(CW_KEY_TYPE, cwKeyType);
|
|
if (cwKeyType > 2)
|
|
cwKeyType = 0;
|
|
|
|
if (cwKeyType == 0)
|
|
Iambic_Key = false;
|
|
else
|
|
{
|
|
Iambic_Key = true;
|
|
if (cwKeyType == 1)
|
|
keyerControl &= ~IAMBICB;
|
|
else
|
|
keyerControl |= IAMBICB;
|
|
}
|
|
|
|
EEPROM.get(COMMON_OPTION0, commonOption0);
|
|
EEPROM.get(DISPLAY_OPTION1, displayOption1);
|
|
EEPROM.get(DISPLAY_OPTION2, displayOption2);
|
|
|
|
for (byte i = 0; i < 8; i++) {
|
|
sMeterLevels[i + 1] = EEPROM.read(S_METER_LEVELS + i);
|
|
}
|
|
|
|
//KeyValues
|
|
for (byte i = 0; i < 16; i++) {
|
|
KeyValues[i][0] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3)); //RANGE : Start Value
|
|
KeyValues[i][1] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3) + 1); //RANGE : End Value
|
|
KeyValues[i][2] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3) + 2); //KEY TYPE
|
|
}
|
|
|
|
#ifdef USE_CUSTOM_LPF_FILTER
|
|
//Custom Filters
|
|
EEPROM.get(CUST_LPF_ENABLED, isCustomFilter);
|
|
if (isCustomFilter == 0x58)
|
|
{
|
|
isCustomFilter_A7 = 1;
|
|
}
|
|
isCustomFilter = (isCustomFilter == 0x58 || isCustomFilter == 0x57);
|
|
|
|
for (byte i = 0; i < 7; i++) {
|
|
CustFilters[i][0] = EEPROM.read(CUST_LPF_START + (i * 2)); //LPF (To) Mhz
|
|
CustFilters[i][1] = EEPROM.read(CUST_LPF_START + (i * 2) + 1); //Enabled I/O
|
|
}
|
|
//char isCustomFilter = 0;
|
|
//char isCustomFilter_A7 = 0;
|
|
//char CustFilters[2][7];
|
|
#endif
|
|
|
|
//User callsign information
|
|
if (EEPROM.read(USER_CALLSIGN_KEY) == 0x59)
|
|
userCallsignLength = EEPROM.read(USER_CALLSIGN_LEN); //MAXIMUM 18 LENGTH
|
|
|
|
//Ham Band Count
|
|
EEPROM.get(HAM_BAND_COUNT, useHamBandCount);
|
|
EEPROM.get(TX_TUNE_TYPE, tuneTXType);
|
|
|
|
byte findedValidValueCount = 0;
|
|
|
|
//Read band Information
|
|
for (byte i = 0; i < useHamBandCount; i++) {
|
|
unsigned int tmpReadValue = 0;
|
|
EEPROM.get(HAM_BAND_RANGE + 4 * i, tmpReadValue);
|
|
hamBandRange[i][0] = tmpReadValue;
|
|
|
|
if (tmpReadValue > 1 && tmpReadValue < 55000)
|
|
findedValidValueCount++;
|
|
|
|
EEPROM.get(HAM_BAND_RANGE + 4 * i + 2, tmpReadValue);
|
|
hamBandRange[i][1] = tmpReadValue;
|
|
}
|
|
|
|
//Check Value Range and default Set for new users
|
|
if ((3 < tuneTXType && tuneTXType < 100) || 103 < tuneTXType || useHamBandCount < 1 || findedValidValueCount < 5)
|
|
{
|
|
tuneTXType = 2;
|
|
//if empty band Information, auto insert default region 2 frequency range
|
|
//This part is made temporary for people who have difficulty setting up, so can remove it when you run out of memory.
|
|
useHamBandCount = 10;
|
|
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
|
|
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
|
|
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
|
|
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7300; //region 2
|
|
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
|
|
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
|
|
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
|
|
hamBandRange[7][0] = 21000; hamBandRange[7][1] = 21450;
|
|
hamBandRange[8][0] = 24890; hamBandRange[8][1] = 24990;
|
|
hamBandRange[9][0] = 28000; hamBandRange[9][1] = 29700;
|
|
}
|
|
|
|
|
|
//Read Tuning Step Index, and steps
|
|
findedValidValueCount = 0;
|
|
EEPROM.get(TUNING_STEP, tuneStepIndex);
|
|
for (byte i = 0; i < 5; i++) {
|
|
arTuneStep[i] = byteToSteps(EEPROM.read(TUNING_STEP + i + 1));
|
|
if (arTuneStep[i] >= 1 && arTuneStep[i] <= 60000) //Maximum 650 for check valid Value
|
|
findedValidValueCount++;
|
|
}
|
|
|
|
//Check Value Range and default Set for new users
|
|
if (findedValidValueCount < 5)
|
|
{
|
|
//Default Setting
|
|
arTuneStep[0] = 10;
|
|
arTuneStep[1] = 50;
|
|
arTuneStep[2] = 100;
|
|
arTuneStep[3] = 500;
|
|
arTuneStep[4] = 1000;
|
|
}
|
|
|
|
if (tuneStepIndex == 0) //New User
|
|
tuneStepIndex = 3;
|
|
|
|
//CW Key ADC Range ======= adjust set value for reduce cw keying error
|
|
//by KD8CEC
|
|
unsigned int tmpMostBits = 0;
|
|
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT1);
|
|
cwAdcSTFrom = EEPROM.read(CW_ADC_ST_FROM) | ((tmpMostBits & 0x03) << 8);
|
|
cwAdcSTTo = EEPROM.read(CW_ADC_ST_TO) | ((tmpMostBits & 0x0C) << 6);
|
|
cwAdcDotFrom = EEPROM.read(CW_ADC_DOT_FROM) | ((tmpMostBits & 0x30) << 4);
|
|
cwAdcDotTo = EEPROM.read(CW_ADC_DOT_TO) | ((tmpMostBits & 0xC0) << 2);
|
|
|
|
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT2);
|
|
cwAdcDashFrom = EEPROM.read(CW_ADC_DASH_FROM) | ((tmpMostBits & 0x03) << 8);
|
|
cwAdcDashTo = EEPROM.read(CW_ADC_DASH_TO) | ((tmpMostBits & 0x0C) << 6);
|
|
cwAdcBothFrom = EEPROM.read(CW_ADC_BOTH_FROM) | ((tmpMostBits & 0x30) << 4);
|
|
cwAdcBothTo = EEPROM.read(CW_ADC_BOTH_TO) | ((tmpMostBits & 0xC0) << 2);
|
|
|
|
//Display Type for CW mode
|
|
isShiftDisplayCWFreq = EEPROM.read(CW_DISPLAY_SHIFT);
|
|
|
|
//Enable / Diable Check for CW Display Cofiguration Group
|
|
if ((commonOption0 & 0x80) != 0x00)
|
|
{
|
|
//Adjust CW Mode Freq
|
|
shiftDisplayAdjustVal = (isShiftDisplayCWFreq & 0x3F) * 10;
|
|
|
|
//check Minus
|
|
if ((isShiftDisplayCWFreq & 0x40) == 0x40)
|
|
shiftDisplayAdjustVal = shiftDisplayAdjustVal * -1;
|
|
|
|
//Shift Display Check (Default : 0)
|
|
if ((isShiftDisplayCWFreq & 0x80) == 0) //Enabled
|
|
isShiftDisplayCWFreq = 1;
|
|
else //Disabled
|
|
isShiftDisplayCWFreq = 0;
|
|
}
|
|
|
|
//Stored IF Shift Option
|
|
if ((commonOption0 & 0x40) != 0x00)
|
|
{
|
|
EEPROM.get(IF_SHIFTVALUE, ifShiftValue);
|
|
isIFShift = ifShiftValue != 0;
|
|
}
|
|
|
|
//Advanced Freq control
|
|
EEPROM.get(ADVANCED_FREQ_OPTION1, advancedFreqOption1);
|
|
|
|
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
|
|
if ((advancedFreqOption1 & 0x01) != 0x00)
|
|
{
|
|
EEPROM.get(IF1_CAL, if1TuneValue);
|
|
|
|
//Stored Enabled SDR Mode
|
|
if ((advancedFreqOption1 & 0x02) != 0x00)
|
|
{
|
|
EEPROM.get(ENABLE_SDR, sdrModeOn);
|
|
}
|
|
}
|
|
|
|
EEPROM.get(SDR_FREQUNCY, SDR_Center_Freq);
|
|
//if (SDR_Center_Freq == 0)
|
|
// SDR_Center_Freq = 32000000;
|
|
|
|
//default Value (for original hardware)
|
|
if (cwAdcSTFrom >= cwAdcSTTo)
|
|
{
|
|
cwAdcSTFrom = 0;
|
|
cwAdcSTTo = 50;
|
|
}
|
|
|
|
if (cwAdcBothFrom >= cwAdcBothTo)
|
|
{
|
|
cwAdcBothFrom = 51;
|
|
cwAdcBothTo = 300;
|
|
}
|
|
|
|
if (cwAdcDotFrom >= cwAdcDotTo)
|
|
{
|
|
cwAdcDotFrom = 301;
|
|
cwAdcDotTo = 600;
|
|
}
|
|
if (cwAdcDashFrom >= cwAdcDashTo)
|
|
{
|
|
cwAdcDashFrom = 601;
|
|
cwAdcDashTo = 800;
|
|
}
|
|
//end of CW Keying Variables
|
|
|
|
if (cwDelayTime < 1 || cwDelayTime > 250)
|
|
cwDelayTime = 60;
|
|
|
|
if (vfoA_mode < 2)
|
|
vfoA_mode = 2;
|
|
|
|
if (vfoB_mode < 2)
|
|
vfoB_mode = 3;
|
|
|
|
|
|
#if UBITX_BOARD_VERSION == 5
|
|
//original code with modified by kd8cec
|
|
if (usbCarrier > 11060000l || usbCarrier < 11048000l)
|
|
usbCarrier = 11052000l;
|
|
|
|
if (cwmCarrier > 11060000l || cwmCarrier < 11048000l)
|
|
cwmCarrier = 11052000l;
|
|
#else
|
|
//original code with modified by kd8cec
|
|
if (usbCarrier > 12010000l || usbCarrier < 11990000l)
|
|
usbCarrier = 11997000l;
|
|
|
|
if (cwmCarrier > 12010000l || cwmCarrier < 11990000l)
|
|
cwmCarrier = 11997000l;
|
|
#endif
|
|
|
|
if (vfoA > 35000000l || 3500000l > vfoA) {
|
|
vfoA = 7150000l;
|
|
vfoA_mode = 2; //LSB
|
|
}
|
|
|
|
if (vfoB > 35000000l || 3500000l > vfoB) {
|
|
vfoB = 14150000l;
|
|
vfoB_mode = 3; //USB
|
|
}
|
|
//end of original code section
|
|
|
|
//for protect eeprom life by KD8CEC
|
|
vfoA_eeprom = vfoA;
|
|
vfoB_eeprom = vfoB;
|
|
vfoA_mode_eeprom = vfoA_mode;
|
|
vfoB_mode_eeprom = vfoB_mode;
|
|
|
|
if (sideTone < 100 || 2000 < sideTone)
|
|
sideTone = 800;
|
|
if (cwSpeed < 10 || 1000 < cwSpeed)
|
|
cwSpeed = 100;
|
|
|
|
if (sideTone < 300 || sideTone > 1000) {
|
|
sideTonePitch = 0;
|
|
sideToneSub = 0;;
|
|
}
|
|
else{
|
|
sideTonePitch = (sideTone - 300) / 50;
|
|
sideToneSub = sideTone % 50;
|
|
}
|
|
}
|
|
|
|
void initPorts(){
|
|
analogReference(DEFAULT);
|
|
|
|
//??
|
|
pinMode(ENC_A, INPUT_PULLUP);
|
|
pinMode(ENC_B, INPUT_PULLUP);
|
|
pinMode(FBUTTON, INPUT_PULLUP);
|
|
|
|
//configure the function button to use the external pull-up
|
|
// pinMode(FBUTTON, INPUT);
|
|
// digitalWrite(FBUTTON, HIGH);
|
|
|
|
pinMode(PTT, INPUT_PULLUP);
|
|
pinMode(ANALOG_KEYER, INPUT_PULLUP);
|
|
pinMode(ANALOG_SMETER, INPUT); //by KD8CEC
|
|
|
|
#ifdef USE_CUSTOM_LPF_FILTER
|
|
if (isCustomFilter_A7)
|
|
{
|
|
pinMode(10, OUTPUT);
|
|
pinMode(11, OUTPUT);
|
|
pinMode(12, OUTPUT);
|
|
pinMode(13, OUTPUT);
|
|
}
|
|
#endif
|
|
|
|
pinMode(CW_TONE, OUTPUT);
|
|
digitalWrite(CW_TONE, 0);
|
|
|
|
pinMode(TX_RX,OUTPUT);
|
|
digitalWrite(TX_RX, 0);
|
|
|
|
pinMode(TX_LPF_A, OUTPUT);
|
|
pinMode(TX_LPF_B, OUTPUT);
|
|
pinMode(TX_LPF_C, OUTPUT);
|
|
digitalWrite(TX_LPF_A, 0);
|
|
digitalWrite(TX_LPF_B, 0);
|
|
digitalWrite(TX_LPF_C, 0);
|
|
|
|
pinMode(CW_KEY, OUTPUT);
|
|
digitalWrite(CW_KEY, 0);
|
|
}
|
|
|
|
//Recovery Factory Setting Values
|
|
void factory_Recovery()
|
|
{
|
|
if (EEPROM.read(FACTORY_BACKUP_YN) != 0x13)
|
|
return;
|
|
|
|
if (digitalRead(PTT) == 0) //Do not proceed if PTT is pressed to prevent malfunction.
|
|
return;
|
|
|
|
printLineF2(F("Factory Recovery"));
|
|
delay(2000);
|
|
if (!btnDown())
|
|
return;
|
|
|
|
printLineF2(F("IF you continue"));
|
|
printLineF1(F("release the key"));
|
|
delay(2000);
|
|
if (btnDown())
|
|
return;
|
|
|
|
printLineF1(F("Press Key PTT"));
|
|
delay(2000);
|
|
if (digitalRead(PTT) == 0)
|
|
{
|
|
for (unsigned int i = 0; i < 32; i++) //factory setting range
|
|
EEPROM.write(i, EEPROM.read(FACTORY_VALUES + i)); //65~96 => 0~31
|
|
|
|
//printLineF2(F("CompleteRecovery"));
|
|
printLineF1(F("Power Reset!"));
|
|
while(1); //Hold
|
|
}
|
|
}
|
|
|
|
|
|
void setup()
|
|
{
|
|
/*
|
|
//Init EEProm for Fault EEProm TEST and Factory Reset
|
|
//please remove remark for others.
|
|
//for (int i = 0; i < 1024; i++)
|
|
for (int i = 16; i < 1024; i++) //protect Master_cal, usb_cal
|
|
EEPROM.write(i, 0xFF);
|
|
lcd.begin(16, 2);
|
|
printLineF(1, F("Complete Erase"));
|
|
sleep(1000);
|
|
//while(1);
|
|
//end section of test
|
|
*/
|
|
|
|
//Load I2C LCD Address for I2C LCD
|
|
//I2C LCD Parametere
|
|
#ifdef USE_I2C_LCD
|
|
EEPROM.get(I2C_LCD_MASTER, I2C_LCD_MASTER_ADDRESS);
|
|
EEPROM.get(I2C_LCD_SECOND, I2C_LCD_SECOND_ADDRESS);
|
|
|
|
if (I2C_LCD_MASTER_ADDRESS < 0x10 || I2C_LCD_MASTER_ADDRESS > 0xF0)
|
|
I2C_LCD_MASTER_ADDRESS = I2C_LCD_MASTER_ADDRESS_DEFAULT;
|
|
|
|
if (I2C_LCD_SECOND_ADDRESS < 0x10 || I2C_LCD_SECOND_ADDRESS > 0xF0)
|
|
I2C_LCD_SECOND_ADDRESS = I2C_LCD_SECOND_ADDRESS_DEFAULT;
|
|
#endif
|
|
|
|
//Serial.begin(9600);
|
|
LCD_Init();
|
|
//printLineF(1, FIRMWARE_VERSION_INFO);
|
|
DisplayVersionInfo(FIRMWARE_VERSION_INFO);
|
|
|
|
Init_Cat(38400, SERIAL_8N1);
|
|
initSettings();
|
|
initPorts();
|
|
|
|
#ifdef USE_SW_SERIAL
|
|
// if (userCallsignLength > 0 && ((userCallsignLength & 0x80) == 0x80))
|
|
// {
|
|
userCallsignLength = userCallsignLength & 0x7F;
|
|
// }
|
|
#else
|
|
//for Chracter LCD
|
|
if (userCallsignLength > 0 && ((userCallsignLength & 0x80) == 0x80))
|
|
{
|
|
userCallsignLength = userCallsignLength & 0x7F;
|
|
DisplayCallsign(userCallsignLength);
|
|
}
|
|
else {
|
|
printLineF(0, F("uBITX v0.20"));
|
|
delay(500);
|
|
clearLine2();
|
|
}
|
|
#endif
|
|
|
|
#ifdef FACTORY_RECOVERY_BOOTUP
|
|
if (btnDown())
|
|
factory_Recovery();
|
|
#endif
|
|
|
|
byteToMode(vfoA_mode, 0);
|
|
initOscillators();
|
|
|
|
frequency = vfoA;
|
|
saveCheckFreq = frequency; //for auto save frequency
|
|
setFrequency(vfoA);
|
|
|
|
#ifdef USE_SW_SERIAL
|
|
SendUbitxData();
|
|
#endif
|
|
|
|
updateDisplay();
|
|
|
|
#ifdef ENABLE_FACTORYALIGN
|
|
if (btnDown())
|
|
factory_alignment();
|
|
#endif
|
|
|
|
}
|
|
|
|
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC
|
|
void checkAutoSaveFreqMode()
|
|
{
|
|
//when tx or ritOn, disable auto save
|
|
if (inTx || ritOn)
|
|
return;
|
|
|
|
//detect change frequency
|
|
if (saveCheckFreq != frequency)
|
|
{
|
|
saveCheckTime = millis();
|
|
saveCheckFreq = frequency;
|
|
}
|
|
else if (saveCheckTime != 0)
|
|
{
|
|
//check time for Frequency auto save
|
|
if (millis() - saveCheckTime > saveIntervalSec * 1000)
|
|
{
|
|
FrequencyToVFO(1);
|
|
saveCheckTime = 0; //for reduce cpu use rate
|
|
}
|
|
}
|
|
}
|
|
|
|
void loop(){
|
|
if (isCWAutoMode == 0){ //when CW AutoKey Mode, disable this process
|
|
if (!txCAT)
|
|
checkPTT();
|
|
checkButton();
|
|
}
|
|
else
|
|
controlAutoCW();
|
|
|
|
cwKeyer();
|
|
|
|
//tune only when not tranmsitting
|
|
if (!inTx){
|
|
if (isCWAutoMode == 0 || cwAutoDialType == 1)
|
|
{
|
|
if (ritOn)
|
|
doRIT();
|
|
else
|
|
doTuningWithThresHold();
|
|
}
|
|
|
|
if (isCWAutoMode == 0 && beforeIdle_ProcessTime < millis() - 250) {
|
|
idle_process();
|
|
checkAutoSaveFreqMode(); //move here form out scope for reduce cpu use rate
|
|
beforeIdle_ProcessTime = millis();
|
|
}
|
|
} //end of check TX Status
|
|
|
|
//we check CAT after the encoder as it might put the radio into TX
|
|
Check_Cat(inTx? 1 : 0);
|
|
|
|
//for SEND SW Serial
|
|
#ifdef USE_SW_SERIAL
|
|
SWS_Process();
|
|
#endif
|
|
}
|