55 lines
1.9 KiB
Plaintext
55 lines
1.9 KiB
Plaintext
---
|
|
title: "02 Méthode des moindres carrés"
|
|
author: Pierre-Edouard Portier
|
|
date: mars 2022
|
|
output: beamer_presentation
|
|
---
|
|
|
|
```{r, include=FALSE}
|
|
source("01_intro.R", local = knitr::knit_global())
|
|
source("02_moindres_carres.R", local = knitr::knit_global())
|
|
```
|
|
|
|
# Espace de fonctions
|
|
|
|
- $f(\mathbf{x}) = \beta_1 f_1(\mathbf{x}) + \beta_2 f_2(\mathbf{x}) + \dots + \beta_p f_p(\mathbf{x})$
|
|
- Jeu de données $\left\{ \mathbf{x^{(k)}},y^{(k)}\right\}_{k=1}^{n}$
|
|
|
|
$$
|
|
\left( \begin{array}{ccccc}
|
|
f_1(\mathbf{x^{(1)}}) & f_2(\mathbf{x^{(1)}}) & \dots & f_p(\mathbf{x^{(1)}}) \\
|
|
f_1(\mathbf{x^{(2)}}) & f_2(\mathbf{x^{(2)}}) & \dots & f_p(\mathbf{x^{(2)}}) \\
|
|
\dots & \dots & \dots & \dots \\
|
|
f_1(\mathbf{x^{(n)}}) & f_2(\mathbf{x^{(n)}}) & \dots & f_p(\mathbf{x^{(n)}})
|
|
\end{array} \right)
|
|
\left( \begin{array}{c}
|
|
\beta_1 \\ \beta_2 \\ \dots \\ \beta_p
|
|
\end{array} \right)
|
|
=
|
|
\left( \begin{array}{c}
|
|
y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(n)}
|
|
\end{array} \right)
|
|
$$
|
|
|
|
- $\mathbf{X}\boldsymbol\beta = \mathbf{y}$
|
|
- Par ex., $\mathbf{x} \in \mathbb{R}^1$ et $f_1(x)=1, f_2(x)=x, f_3(x)=x^2,\dots, f_p(x)=x^{p-1}$ (régression polynomiale)
|
|
|
|
# Moindres carrés
|
|
|
|
- Annuler la dérivée selon $\boldsymbol\beta$ de la fonction convexe $\|\mathbf{X}\boldsymbol\beta-\mathbf{y}\|^2_2$
|
|
- $\|\mathbf{X}\boldsymbol\beta-\mathbf{y}\|^2_2 = \boldsymbol\beta^T\mathbf{X}^T\mathbf{X}\boldsymbol\beta - 2\boldsymbol\beta^T\mathbf{X}^T\mathbf{y} + \mathbf{y}^T\mathbf{y}$
|
|
- $\mathbf{0} = 2\mathbf{X}^T\mathbf{X}\boldsymbol\beta - 2\mathbf{X}^T\mathbf{y} \quad \equiv \quad \mathbf{X}^T\mathbf{X} \boldsymbol\beta = \mathbf{X}^T\mathbf{y}$
|
|
- $\hat{\boldsymbol\beta} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$
|
|
|
|
# Exemple pour un polynôme de degré $3$
|
|
|
|
```{r, echo=FALSE}
|
|
set.seed(1123)
|
|
# Image par f d'un échantillon uniforme sur l'intervalle [0,1], avec ajout d'un
|
|
# bruit gaussien de moyenne nulle et d'écart type 0.2
|
|
data = gendat(10,0.2)
|
|
coef = polyreg2(data,3)
|
|
plt(data,f)
|
|
pltpoly(coef)
|
|
```
|