intro_to_ml/02_moindres_carres.Rmd

86 lines
4.4 KiB
Plaintext

---
title: "02 Méthode des moindres carrés"
output:
bookdown::pdf_document2:
number_section: yes
toc: false
classoption: fleqn
---
```{r, include=FALSE}
source("01_intro.R", local = knitr::knit_global())
source("02_moindres_carres.R", local = knitr::knit_global())
```
# Espace de fonctions
Soit un espace vectoriel composé de fonctions. Une base de cet espace est un ensemble de fonctions ($f_1, f_2, \dots f_N$) tel que toute fonction de l'espace s'exprime comme combinaison linéaire des fonctions de base.
\[
f(\mathbf{x}) = a_1 f_1(\mathbf{x}) + a_2 f_2(\mathbf{x}) + \dots + a_N f_N(\mathbf{x})
\]
Pour un jeu de données $\left\{ \mathbf{x^{(k)}},y^{(k)}\right\}_{k=1}^{N}$ de taille $N$, les coefficients $a_i$ sont solution d'un système linéaire.
\[
\left( \begin{array}{ccccc}
f_1(\mathbf{x^{(1)}}) & f_2(\mathbf{x^{(1)}}) & \dots & f_N(\mathbf{x^{(1)}}) \\
f_1(\mathbf{x^{(2)}}) & f_2(\mathbf{x^{(2)}}) & \dots & f_N(\mathbf{x^{(2)}}) \\
\dots & \dots & \dots & \dots \\
f_1(\mathbf{x^{(N)}}) & f_2(\mathbf{x^{(N)}}) & \dots & f_N(\mathbf{x^{(N)}})
\end{array} \right)
\left( \begin{array}{c}
a_1 \\ a_2 \\ \dots \\ a_N
\end{array} \right)
=
\left( \begin{array}{c}
y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(N)}
\end{array} \right)
\]
Nous notons ce système linéaire $\mathbf{Ax} = \mathbf{b}$.
# Expression matricielle
Le système linéaire $\mathbf{Ax} = \mathbf{b}$ avec $\mathbf{A} \in \mathbb{R}^{M \times N}$ n'a pas de solution quand le nombre d'observations dépasse le nombre de fonctions de base (c'est-à-dire, $M>N$). Une approche possible est alors de chercher une approximation $\mathbf{Ax} \approx \mathbf{b}$ qui minimise la somme des carrés des erreurs : $\|\mathbf{Ax}-\mathbf{b}\|^2_2$.
\begin{align*}
& \|\mathbf{A}\mathbf{x}-\mathbf{b}\|^2_2 \\
= \{ & \|\mathbf{x}\|_2 = \sqrt{\mathbf{x}\cdot\mathbf{x}} \} \\
& \left(\mathbf{A}\mathbf{x}-\mathbf{b}\right) \cdot \left(\mathbf{A}\mathbf{x}-\mathbf{b}\right) \\
= \{ & \text{Par définition du produit scalaire euclidien} \} \\
& \left(\mathbf{A}\mathbf{x}-\mathbf{b}\right)^T \left(\mathbf{A}\mathbf{x}-\mathbf{b}\right) \\
= \{ & \text{propriété de la transposition} \} \\
& \left(\mathbf{x}^T\mathbf{A}^T - \mathbf{b}^T \right) \left(\mathbf{A}\mathbf{x}-\mathbf{b}\right) \\
= \{ & \text{multiplication} \} \\
& \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x} - \mathbf{x}^T\mathbf{A}^T\mathbf{b} - \mathbf{b}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{b} \\
= \{ & \mathbf{b}^T\mathbf{A}\mathbf{x} \text{ étant une valeur scalaire, } \mathbf{b}^T\mathbf{A}\mathbf{x} = \left(\mathbf{b}^T\mathbf{A}\mathbf{x}\right)^T = \mathbf{x}^T\mathbf{A}^T\mathbf{b} \} \\
& \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x} - 2\mathbf{x}^T\mathbf{A}^T\mathbf{b} + \mathbf{b}^T\mathbf{b}
\end{align*}
Cette dernière expression quadratique en $\mathbf{x}$ correspond à une surface convexe. Donc son minimum peut être calculé en annulant sa dérivée (penser à une courbe $y = a+bx+cx^2$ dont l'unique extremum est atteint lorsque la pente est nulle).
\begin{align*}
& \mathbf{0} = 2\mathbf{A}^T\mathbf{A}\mathbf{x} - 2\mathbf{A}^T\mathbf{b} \\
=& \\
& \mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{A}^T\mathbf{b}
\end{align*}
Ainsi, quand $M>N$, la solution approximée $\mathbf{x}$, telle que $\mathbf{Ax} \approx \mathbf{b}$ par minimisation de la somme des carrés des erreurs, est la solution du système linéaire suivant où $\mathbf{A}^T\mathbf{A}$ est appelée la matrice de Gram.
\[
\mathbf{A}^T\mathbf{A} \mathbf{x} = \mathbf{A}^T\mathbf{b}
\]
# Méthode des moindres carrés appliquée à la régression polynomiale
Pour un polynôme de degré $N-1$, les fonctions de bases mentionnées ci-dessus sont : $f_1(x)=1$, $f_2(x)=x$, $f_3(x)=x^2$,..., $f_N(x)=x^{N-1}$. Elles permettent de définir la matrice des données $\mathbf{A}$ et la matrice de Gram $\mathbf{A}^T\mathbf{A}$.
Nous reprenons l'exemple synthétique du précédent chapitre et nous résolvons le système linéaire correspondant à la matrice de Gram pour un polynôme de degré fixé.
```{r}
set.seed(1123)
# Image par f d'un échantillon uniforme sur l'intervalle [0,1], avec ajout d'un
# bruit gaussien de moyenne nulle et d'écart type 0.2
data = gendat(10,0.2)
coef = polyreg2(data,3)
plt(data,f)
pltpoly(coef)
```
Ce polynôme de degré trois modélise mieux la fonction génératrice inconnue que celui de degré quatre qui ne commettait aucune erreur sur les données observées.