one hot encoding function / correspondence analysis based landmarks for nystroem approx / experiment on housing dataset

This commit is contained in:
Pierre-Edouard Portier 2023-01-22 21:27:38 +01:00
parent 7a656f6597
commit d3639fe2ef
3 changed files with 155 additions and 30 deletions

View File

@ -0,0 +1,106 @@
source("05_d_svd_mca_code.R")
source("04_validation_croisee_code.R")
source("19_nystroem_approximation_code.R")
datasetHousing.nakr <-
function()
{
dat <- read.csv(file="data/housing.csv", header=TRUE)
dat$ocean_proximity <- as.factor(dat$ocean_proximity)
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="<1H OCEAN"] <- "O:<1H"
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="ISLAND"] <- "O:ISL"
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="INLAND"] <- "O:INL"
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="NEAR BAY"] <- "O:NB"
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="NEAR OCEAN"] <- "O:NO"
dat$total_bedrooms[is.na(dat$total_bedrooms)] <- median(dat$total_bedrooms, na.rm=TRUE)
dat <- dat[dat$ocean_proximity != "O:ISL", ]
# suppression des modalités vides (ici "O:ISL")
dat <- droplevels(dat)
dat['rooms'] <- dat['total_rooms'] / dat['households']
dat['bedrooms'] <- dat['total_bedrooms'] / dat['households']
dat['pop'] <- dat['population'] / dat['households']
dat <- dat[dat$median_house_value < 500001, ]
dat <- dat[c('longitude', 'latitude', 'housing_median_age', 'households',
'median_income', 'median_house_value', 'ocean_proximity',
'rooms', 'bedrooms', 'pop')]
Z <- onehot_enc(dat[c('ocean_proximity')])
dat <- cbind(dat, as.data.frame(Z))
dat <- dat[,!(colnames(dat) %in% c('ocean_proximity'))]
dat.all <- dat
dat <- list(X = dat[,!(colnames(dat) %in% c('median_house_value'))],
Y = dat[,c('median_house_value')])
split <- splitdata(dat, 0.8)
entr <- split$entr
test <- split$test
r <- list( dat=dat.all, entr=entr, test=test )
return(r)
}
# test.tbl <- table(c(4,2,4,2,1,1,1))
# all(intersperse(test.tbl) == c(1, 2, 4, 1, 2, 4, 1))
intersperse <-
function(tbl)
{
n <- sum(tbl)
values <- as.numeric(names(tbl))
r <- numeric(n)
i <- 1
while(i <= n)
{
for(j in 1:length(tbl))
{
if(tbl[j] != 0)
{
r[i] <- values[j]
i <- i + 1
tbl[j] <- tbl[j] - 1
}
}
}
return(r)
}
# sample the landmarks from the clusters of individuals
# obtained after correspondence analysis
landmarks.by.ca.clst <-
function(cam, X, nbLandmarks)
{
if(nbLandmarks > nrow(X))
{
stop("The number of landmarks must be less than the number of training samples.")
}
landmarks <- numeric(nbLandmarks)
clst <- cam$clsti$cluster[as.numeric(rownames(X))]
clst.tbl <- table(clst)
nb.by.clst <- table((intersperse(clst.tbl))[1:nbLandmarks])
clst.id <- as.numeric(names(nb.by.clst))
set.seed(1123)
clst <- sample(clst)
offset <- 0
for (i in 1:length(nb.by.clst))
{
k <- as.numeric(nb.by.clst[i])
landmarks[(offset+1):(offset+k)] <- as.numeric(names((clst[clst==clst.id[i]])[1:k]))
offset <- offset+k
}
return(landmarks)
}
hous.dat.nakr <- datasetHousing.nakr()
X.entr <- hous.dat.nakr$entr$X
Y.entr <- hous.dat.nakr$entr$Y
X.test <- hous.dat.nakr$test$X
Y.test <- hous.dat.nakr$test$Y
hous.dat.ca <- datasetHousing.mca()
hous.cam <- mca(hous.dat.ca)
nb.landmarks <- round(sqrt(nrow(X.entr)))
landmarks <- landmarks.by.ca.clst(hous.cam, X.entr, nb.landmarks)
nakrm <- kfold.nakr(X.entr, Y.entr, landmarks=landmarks)
nakrm.yh <- predict(nakrm, X.test)
nakrm.mae <- mean(abs(nakrm.yh - Y.test))

View File

@ -196,7 +196,7 @@ Nous reprenons le jeu de données synthétique utilisé depuis le premier module
entr <- splitres$entr entr <- splitres$entr
test <- splitres$test test <- splitres$test
nakrm <- nakr(entr$X,entr$Y, nspl=15) nakrm <- nakr(entr$X,entr$Y, nb.landmarks=25)
yh <- predict(nakrm,test$X) yh <- predict(nakrm,test$X)
plt(test,f) plt(test,f)
points(test$X, yh, pch=4) points(test$X, yh, pch=4)

View File

@ -14,20 +14,20 @@ function(X1, X2, sigma2)
# Nystroem Approximation Kernel Ridge Regression # Nystroem Approximation Kernel Ridge Regression
nakr <- nakr <-
function(X, y, sigma2=NULL, lambdas=NULL, splidx=NULL, nspl=NULL) function(X, y, sigma2=NULL, lambda=1E-4, landmarks=NULL, nb.landmarks=NULL)
{ {
X <- as.matrix(X) X <- as.matrix(X)
n <- nrow(X) n <- nrow(X)
p <- ncol(X) p <- ncol(X)
if(is.null(lambdas)) { lambdas <- 10^seq(-8, 2,by=0.5) }
if(is.null(sigma2)) { sigma2 <- p } if(is.null(sigma2)) { sigma2 <- p }
if(is.null(splidx)) { if(is.null(landmarks)) {
if(is.null(nspl)) { nspl <- round(sqrt(n)) } if(is.null(nb.landmarks)) { nb.landmarks <- round(sqrt(n)) }
splidx <- sample(1:n, nspl, replace = FALSE) splidx <- sample(1:n, nb.landmarks, replace = FALSE)
} else { } else {
nspl <- length(splidx) splidx <- which(rownames(X) %in% as.character(landmarks))
nb.landmarks <- length(splidx)
} }
splidx <- sort(splidx) splidx <- sort(splidx)
@ -39,35 +39,28 @@ function(X, y, sigma2=NULL, lambdas=NULL, splidx=NULL, nspl=NULL)
svdK11 <- svd(K11) svdK11 <- svd(K11)
# K11 will often be ill-formed, thus we drop the bottom singular values # K11 will often be ill-formed, thus we drop the bottom singular values
k <- 0.8 * nspl k <- which(svdK11$d < 1E-12)[1] - 1
US <- svdK11$u[,1:k] %*% diag(1 / sqrt(svdK11$d[1:k])) US <- svdK11$u[,1:k] %*% diag(1 / sqrt(svdK11$d[1:k]))
L <- C %*% US L <- C %*% US
LtL <- t(L) %*% L Ginv <- t(L) %*% L
looe <- double(length(lambdas))
coef <- matrix(data = NA, nrow = n, ncol = length(lambdas))
i <- 1
for(lambda in lambdas) {
Ginv <- LtL
diag(Ginv) <- diag(Ginv) + lambda diag(Ginv) <- diag(Ginv) + lambda
Ginv <- solve(Ginv) Ginv <- chol2inv(chol(Ginv))
Ginv <- L %*% Ginv %*% t(L) Ginv <- L %*% Ginv %*% t(L)
Ginv <- - Ginv / lambda Ginv <- - Ginv / lambda
diag(Ginv) <- diag(Ginv) + (1/lambda) diag(Ginv) <- diag(Ginv) + (1/lambda)
coef[,i] <- Ginv %*% y coef <- Ginv %*% y
looe[i] <- mean((coef[,i]/diag(Ginv))^2)
i <- i+1 K11inv <- svdK11$v[,1:k] %*% diag(1/svdK11$d[1:k]) %*% t(svdK11$u[,1:k])
} beta <- K11inv %*% t(C) %*% coef
looe.min <- min(looe)
lambda <- lambdas[which(looe == looe.min)]
coef <- coef[,which(looe == looe.min)]
r <- list(X=X, r <- list(X=X,
y=y, y=y,
sigma2=sigma2, sigma2=sigma2,
lambda=lambda,
splidx=splidx,
coef=coef, coef=coef,
looe=looe.min, beta=beta
lambda=lambda
) )
class(r) <- "nakr" class(r) <- "nakr"
return(r) return(r)
@ -87,7 +80,33 @@ function(o, newdata)
} }
newdata <- scale(newdata,center=attr(o$X,"scaled:center"), newdata <- scale(newdata,center=attr(o$X,"scaled:center"),
scale=attr(o$X,"scaled:scale")) scale=attr(o$X,"scaled:scale"))
Ktest <- gausskernel(newdata, o$X, o$sigma2) Ktest <- gausskernel(newdata, as.matrix(o$X[o$splidx,]), o$sigma2)
yh <- Ktest %*% o$coef yh <- Ktest %*% o$beta
yh <- (yh * attr(o$y,"scaled:scale")) + attr(o$y,"scaled:center") yh <- (yh * attr(o$y,"scaled:scale")) + attr(o$y,"scaled:center")
} }
kfold.nakr <-
function(X, y, K=5, lambdas=NULL, sigma2=NULL, landmarks=NULL, nb.landmarks=NULL)
{
if(is.null(lambdas)) { lambdas <- 10^seq(-8, 2, by=1) }
N <- nrow(X)
folds <- rep_len(1:K, N)
folds <- sample(folds, N)
maes <- matrix(data = NA, nrow = K, ncol = length(lambdas))
colnames(maes) <- lambdas
lambda_idx <- 1
for(lambda in lambdas) {
for(k in 1:K) {
fold <- folds == k
nakrm <- nakr(X[!fold,], y[!fold], sigma2, lambda, landmarks, nb.landmarks)
pred <- predict(nakrm, X[fold,])
maes[k,lambda_idx] <- mean(abs(pred - y[fold]))
}
lambda_idx <- lambda_idx + 1
}
mmaes <- colMeans(maes)
minmmaes <- min(mmaes)
bestlambda <- lambdas[which(mmaes == minmmaes)]
nakrm <- nakr(X, y, sigma2, bestlambda, landmarks, nb.landmarks)
}