minor error correction

This commit is contained in:
Pierre-Edouard Portier 2022-03-13 23:08:08 +01:00
parent 15b77770de
commit 44a8555598

View File

@ -67,7 +67,7 @@ En notant $\mathbf{S(\lambda)}$ la matrice diagonale qui compresse les dimension
Nous pouvons en particulier exprimer les valeurs $h_i$ en fonction du SVD de $\mathbf{X}$ : Nous pouvons en particulier exprimer les valeurs $h_i$ en fonction du SVD de $\mathbf{X}$ :
\[ \[
h_i = \sum_{d_j>0} \frac{d_j^2}{d_j^2 + \lambda} \mathbf{U}_{ij} h_i = \sum_{d_j>0} \frac{d_j^2}{d_j^2 + \lambda} u_{ij}
\] \]
Observons la trace de $\mathbf{H(\lambda)}$, c'est-à-dire la somme de ses éléments diagonaux, l'expression se simplifie car, comme $\mathbf{U}$ est orthogonale, $\mathbf{u_i}^T\mathbf{u_i}=1$ et $\mathbf{u_i}^T\mathbf{u_j}=0$ pour $i \neq j$ : Observons la trace de $\mathbf{H(\lambda)}$, c'est-à-dire la somme de ses éléments diagonaux, l'expression se simplifie car, comme $\mathbf{U}$ est orthogonale, $\mathbf{u_i}^T\mathbf{u_i}=1$ et $\mathbf{u_i}^T\mathbf{u_j}=0$ pour $i \neq j$ :
@ -124,7 +124,7 @@ Finalement, nous avons découvert une expression de l'erreur LOOCV basée sur le
\begin{align*} \begin{align*}
&LOO_\lambda = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{y_i - \hat{y}_{\lambda i}}{1 - h_i} \right)^2 \\ &LOO_\lambda = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{y_i - \hat{y}_{\lambda i}}{1 - h_i} \right)^2 \\
&\text{avec } h_i = \sum_{d_j>0} \frac{d_j^2}{d_j^2 + \lambda} \mathbf{U}_{ij} &\text{avec } h_i = \sum_{d_j>0} \frac{d_j^2}{d_j^2 + \lambda} u_{ij}
\end{align*} \end{align*}
Nous remarquons que cette mesure de l'erreur peut être instable quand au moins l'un des $h_i$ est proche de $1$. Une solution est de remplacer dans cette expression chaque $h_i$ par la moyenne de tous les $h_i$, c'est-à-dire $\frac{1}{n} tr(\mathbf{H}(\lambda))$. Nous obtenons une nouvelle mesure de l'erreur appelée *validation croisée généralisée* (GCV pour "Generalized Cross Validation"). Nous remarquons que cette mesure de l'erreur peut être instable quand au moins l'un des $h_i$ est proche de $1$. Une solution est de remplacer dans cette expression chaque $h_i$ par la moyenne de tous les $h_i$, c'est-à-dire $\frac{1}{n} tr(\mathbf{H}(\lambda))$. Nous obtenons une nouvelle mesure de l'erreur appelée *validation croisée généralisée* (GCV pour "Generalized Cross Validation").