implementation of nystroem approx
This commit is contained in:
parent
1d0386b45d
commit
2ad99f1adb
@ -3,7 +3,7 @@
|
||||
```{r, include=FALSE}
|
||||
source("01_intro_code.R", local = knitr::knit_global())
|
||||
source("04_validation_croisee_code.R", local = knitr::knit_global())
|
||||
source("18_kernel_ridge_regression_code.R", local = knitr::knit_global())
|
||||
source("19_nystroem_approximation_code.R", local = knitr::knit_global())
|
||||
```
|
||||
|
||||
## Approximation de Nyström d'un noyau
|
||||
@ -183,3 +183,29 @@ $$
|
||||
& \lambda^{-1}\mathbf{I_n} - \lambda^{-1}\mathbf{L}\left(\lambda\mathbf{I_m}+\mathbf{L}^T\mathbf{L}\right)^{-1}\mathbf{L}^T \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
## Exemple sur un jeu de données synthétique
|
||||
|
||||
Nous reprenons le jeu de données synthétique utilisé depuis le premier module pour tester l'implémentation de la régression ridge à noyau gaussien.
|
||||
|
||||
```{r}
|
||||
set.seed(1123)
|
||||
n <- 100
|
||||
data = gendat(n,0.2)
|
||||
splitres <- splitdata(data,0.8)
|
||||
entr <- splitres$entr
|
||||
test <- splitres$test
|
||||
|
||||
nakrm <- nakr(entr$X,entr$Y, nspl=25)
|
||||
yh <- predict(nakrm,test$X)
|
||||
plt(test,f)
|
||||
points(test$X, yh, pch=4)
|
||||
testmae <- mean(abs(yh-test$Y))
|
||||
```
|
||||
|
||||
Ce modèle atteint une erreur absolue moyenne de `r testmae` sur le jeu de test.
|
||||
|
||||
## Annexe code source
|
||||
|
||||
```{r, code=readLines("19_nystroem_approximation_code.R"), eval=FALSE}
|
||||
```
|
||||
|
93
19_nystroem_approximation_code.R
Normal file
93
19_nystroem_approximation_code.R
Normal file
@ -0,0 +1,93 @@
|
||||
# compute the gaussian kernel between each row of X1 and each row of X2
|
||||
# should be done more efficiently
|
||||
gausskernel <-
|
||||
function(X1, X2, sigma2)
|
||||
{
|
||||
n1 <- dim(X1)[1]
|
||||
n2 <- dim(X2)[1]
|
||||
K <- matrix(nrow = n1, ncol = n2)
|
||||
for(i in 1:n1)
|
||||
for(j in 1:n2)
|
||||
K[i,j] <- sum(X1[i,] - X2[j,])^2
|
||||
K <- exp(-1*K/sigma2)
|
||||
}
|
||||
|
||||
# Nystroem Approximation Kernel Ridge Regression
|
||||
nakr <-
|
||||
function(X, y, sigma2=NULL, lambdas=NULL, splidx=NULL, nspl=NULL)
|
||||
{
|
||||
X <- as.matrix(X)
|
||||
n <- nrow(X)
|
||||
p <- ncol(X)
|
||||
|
||||
if(is.null(lambdas)) { lambdas <- 10^seq(-8, 2,by=0.5) }
|
||||
if(is.null(sigma2)) { sigma2 <- p }
|
||||
|
||||
if(is.null(splidx)) {
|
||||
if(is.null(nspl)) { nspl <- round(sqrt(n)) }
|
||||
splidx <- sample(1:n, nspl, replace = FALSE)
|
||||
} else {
|
||||
nspl <- length(splidx)
|
||||
}
|
||||
splidx <- sort(splidx)
|
||||
|
||||
X <- scale(X)
|
||||
y <- scale(y)
|
||||
|
||||
C <- gausskernel(X, as.matrix(X[splidx,]), sigma2)
|
||||
K11 <- C[splidx,]
|
||||
|
||||
svdK11 <- svd(K11)
|
||||
# K11 will often be ill-formed, thus we drop the bottom singular values
|
||||
k <- 0.8 * nspl
|
||||
US <- svdK11$u[,1:k] %*% diag(1 / sqrt(svdK11$d[1:k]))
|
||||
L <- C %*% US
|
||||
LtL <- t(L) %*% L
|
||||
|
||||
looe <- double(length(lambdas))
|
||||
coef <- matrix(data = NA, nrow = n, ncol = length(lambdas))
|
||||
i <- 1
|
||||
for(lambda in lambdas) {
|
||||
Ginv <- LtL
|
||||
diag(Ginv) <- diag(Ginv) + lambda
|
||||
Ginv <- solve(Ginv)
|
||||
Ginv <- L %*% Ginv %*% t(L)
|
||||
Ginv <- - Ginv / lambda
|
||||
diag(Ginv) <- diag(Ginv) + (1/lambda)
|
||||
coef[,i] <- Ginv %*% y
|
||||
looe[i] <- mean((coef[,i]/diag(Ginv))^2)
|
||||
i <- i+1
|
||||
}
|
||||
looe.min <- min(looe)
|
||||
lambda <- lambdas[which(looe == looe.min)]
|
||||
coef <- coef[,which(looe == looe.min)]
|
||||
|
||||
r <- list(X=X,
|
||||
y=y,
|
||||
sigma2=sigma2,
|
||||
coef=coef,
|
||||
looe=looe.min,
|
||||
lambda=lambda
|
||||
)
|
||||
class(r) <- "nakr"
|
||||
return(r)
|
||||
}
|
||||
|
||||
predict.nakr <-
|
||||
function(o, newdata)
|
||||
{
|
||||
if(class(o) != "nakr") {
|
||||
warning("Object is not of class 'nakr'")
|
||||
UseMethod("predict")
|
||||
return(invisible(NULL))
|
||||
}
|
||||
newdata <- as.matrix(newdata)
|
||||
if(ncol(o$X)!=ncol(newdata)) {
|
||||
stop("Not the same number of variables btwn fitted nakr object and new data")
|
||||
}
|
||||
newdata <- scale(newdata,center=attr(o$X,"scaled:center"),
|
||||
scale=attr(o$X,"scaled:scale"))
|
||||
Ktest <- gausskernel(newdata, o$X, o$sigma2)
|
||||
yh <- Ktest %*% o$coef
|
||||
yh <- (yh * attr(o$y,"scaled:scale")) + attr(o$y,"scaled:center")
|
||||
}
|
Loading…
Reference in New Issue
Block a user