slides pour moindres carrés
This commit is contained in:
parent
183e0e0559
commit
15b77770de
1
.gitignore
vendored
1
.gitignore
vendored
@ -6,6 +6,7 @@
|
||||
*.swp
|
||||
01_intro.pdf
|
||||
02_moindres_carres.pdf
|
||||
02_moindres_carres_slides.pdf
|
||||
02_a_application_abalone.pdf
|
||||
02_a_application_abalone_cache/
|
||||
02_a_application_abalone_files/
|
||||
|
54
02_moindres_carres_slides.Rmd
Normal file
54
02_moindres_carres_slides.Rmd
Normal file
@ -0,0 +1,54 @@
|
||||
---
|
||||
title: "02 Méthode des moindres carrés"
|
||||
author: Pierre-Edouard Portier
|
||||
date: mars 2022
|
||||
output: beamer_presentation
|
||||
---
|
||||
|
||||
```{r, include=FALSE}
|
||||
source("01_intro.R", local = knitr::knit_global())
|
||||
source("02_moindres_carres.R", local = knitr::knit_global())
|
||||
```
|
||||
|
||||
# Espace de fonctions
|
||||
|
||||
- $f(\mathbf{x}) = \beta_1 f_1(\mathbf{x}) + \beta_2 f_2(\mathbf{x}) + \dots + \beta_p f_p(\mathbf{x})$
|
||||
- Jeu de données $\left\{ \mathbf{x^{(k)}},y^{(k)}\right\}_{k=1}^{n}$
|
||||
|
||||
$$
|
||||
\left( \begin{array}{ccccc}
|
||||
f_1(\mathbf{x^{(1)}}) & f_2(\mathbf{x^{(1)}}) & \dots & f_p(\mathbf{x^{(1)}}) \\
|
||||
f_1(\mathbf{x^{(2)}}) & f_2(\mathbf{x^{(2)}}) & \dots & f_p(\mathbf{x^{(2)}}) \\
|
||||
\dots & \dots & \dots & \dots \\
|
||||
f_1(\mathbf{x^{(n)}}) & f_2(\mathbf{x^{(n)}}) & \dots & f_p(\mathbf{x^{(n)}})
|
||||
\end{array} \right)
|
||||
\left( \begin{array}{c}
|
||||
\beta_1 \\ \beta_2 \\ \dots \\ \beta_p
|
||||
\end{array} \right)
|
||||
=
|
||||
\left( \begin{array}{c}
|
||||
y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(n)}
|
||||
\end{array} \right)
|
||||
$$
|
||||
|
||||
- $\mathbf{X}\boldsymbol\beta = \mathbf{y}$
|
||||
- Par ex., $\mathbf{x} \in \mathbb{R}^1$ et $f_1(x)=1, f_2(x)=x, f_3(x)=x^2,\dots, f_p(x)=x^{p-1}$ (régression polynomiale)
|
||||
|
||||
# Moindres carrés
|
||||
|
||||
- Annuler la dérivée selon $\mathbf{X}$ de la fonction convexe $\|\mathbf{X}\boldsymbol\beta-\mathbf{y}\|^2_2$
|
||||
- $\|\mathbf{X}\boldsymbol\beta-\mathbf{y}\|^2_2 = \boldsymbol\beta^T\mathbf{X}^T\mathbf{X}\boldsymbol\beta - 2\boldsymbol\beta^T\mathbf{X}^T\mathbf{y} + \mathbf{y}^T\mathbf{y}$
|
||||
- $\mathbf{0} = 2\mathbf{X}^T\mathbf{X}\boldsymbol\beta - 2\mathbf{X}^T\mathbf{y} \quad \equiv \quad \mathbf{X}^T\mathbf{X} \boldsymbol\beta = \mathbf{X}^T\mathbf{y}$
|
||||
- $\hat{\boldsymbol\beta} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$
|
||||
|
||||
# Exemple pour un polynôme de degré $3$
|
||||
|
||||
```{r, echo=FALSE}
|
||||
set.seed(1123)
|
||||
# Image par f d'un échantillon uniforme sur l'intervalle [0,1], avec ajout d'un
|
||||
# bruit gaussien de moyenne nulle et d'écart type 0.2
|
||||
data = gendat(10,0.2)
|
||||
coef = polyreg2(data,3)
|
||||
plt(data,f)
|
||||
pltpoly(coef)
|
||||
```
|
Loading…
x
Reference in New Issue
Block a user