99 lines
2.2 KiB
R
99 lines
2.2 KiB
R
|
gausskernel <-
|
||
|
function(X, sigma2)
|
||
|
{
|
||
|
return(exp(-1*as.matrix(dist(X)^2)/sigma2))
|
||
|
}
|
||
|
|
||
|
# For X a square matrix, efficient impl of X %*% diag(d)
|
||
|
multdiag <-
|
||
|
function(X,d)
|
||
|
{
|
||
|
R <- matrix(NA, nrow=dim(X)[1], ncol=dim(X)[2])
|
||
|
for (i in 1:dim(X)[2]) { R[,i]=X[,i]*d[i] }
|
||
|
return(R)
|
||
|
}
|
||
|
|
||
|
krr <-
|
||
|
function(X, y, sigma2=NULL, lambdas=NULL)
|
||
|
{
|
||
|
X <- as.matrix(X)
|
||
|
n <- nrow(X)
|
||
|
p <- ncol(X)
|
||
|
|
||
|
if(is.null(lambdas)) { lambdas <- 10^seq(-8, 2,by=0.5) }
|
||
|
if(is.null(sigma2)) { sigma2 <- p }
|
||
|
|
||
|
X <- scale(X)
|
||
|
y <- scale(y)
|
||
|
|
||
|
K <- gausskernel(X, sigma2=sigma2)
|
||
|
eig <- eigen(K, symmetric=TRUE)
|
||
|
|
||
|
qty <- matrix(NA,n,n)
|
||
|
qty <- crossprod(eig$vectors, y)
|
||
|
|
||
|
looe <- double(length(lambdas))
|
||
|
coef <- matrix(data = NA, nrow = n, ncol = length(lambdas))
|
||
|
i <- 1
|
||
|
for(lambda in lambdas) {
|
||
|
diag <- 1/(eig$values + lambda)
|
||
|
qdiag <- multdiag(eig$vectors, diag)
|
||
|
coef[,i] <- qdiag %*% qty
|
||
|
ginvdiag <- rowSums(multdiag(eig$vectors^2, diag))
|
||
|
looe[i] <- mean((coef[,i]/ginvdiag)^2)
|
||
|
i <- i+1
|
||
|
}
|
||
|
looe.min <- min(looe)
|
||
|
lambda <- lambdas[which(looe == looe.min)]
|
||
|
coef <- coef[,which(looe == looe.min)]
|
||
|
yh <- K%*%coef
|
||
|
yh <- yh * attr(y,"scaled:scale") + attr(y,"scaled:center")
|
||
|
|
||
|
r <- list(K=K,
|
||
|
X=X,
|
||
|
y=y,
|
||
|
sigma2=sigma2,
|
||
|
coef=coef,
|
||
|
looe=looe.min,
|
||
|
lambda=lambda,
|
||
|
yh=yh
|
||
|
)
|
||
|
class(r) <- "krr"
|
||
|
return(r)
|
||
|
}
|
||
|
|
||
|
predict.krr <-
|
||
|
function(o, newdata)
|
||
|
{
|
||
|
if(class(o) != "krr") {
|
||
|
warning("Object is not of class 'krr'")
|
||
|
UseMethod("predict")
|
||
|
return(invisible(NULL))
|
||
|
}
|
||
|
newdata <- as.matrix(newdata)
|
||
|
if(ncol(o$X)!=ncol(newdata)) {
|
||
|
stop("Not the same number of variables btwn fitted krr object and new data")
|
||
|
}
|
||
|
newdata <- scale(newdata,center=attr(o$X,"scaled:center"),
|
||
|
scale=attr(o$X,"scaled:scale"))
|
||
|
n <- nrow(o$X)
|
||
|
nn <- nrow(newdata)
|
||
|
K <- gausskernel(rbind(newdata,o$X),sigma2=o$sigma2)[1:nn,(nn+1):(nn+n)]
|
||
|
K <- matrix(K,nrow=nn,byrow=FALSE)
|
||
|
yh <- K%*%o$coef
|
||
|
yh <- (yh * attr(o$y,"scaled:scale")) + attr(o$y,"scaled:center")
|
||
|
}
|
||
|
|
||
|
|
||
|
# Tests
|
||
|
|
||
|
test.multdiag <-
|
||
|
function()
|
||
|
{
|
||
|
A <- matrix(seq(from=1, to=5*5, by=1), nrow=5)
|
||
|
d <- seq(from=1, to=5, by=1)
|
||
|
B <- multdiag(A,d)
|
||
|
C <- A %*% diag(d)
|
||
|
identical(B,C)
|
||
|
}
|