intro_to_ml/18_kernel_ridge_regression.R

99 lines
2.2 KiB
R
Raw Normal View History

gausskernel <-
function(X, sigma2)
{
return(exp(-1*as.matrix(dist(X)^2)/sigma2))
}
# For X a square matrix, efficient impl of X %*% diag(d)
multdiag <-
function(X,d)
{
R <- matrix(NA, nrow=dim(X)[1], ncol=dim(X)[2])
for (i in 1:dim(X)[2]) { R[,i]=X[,i]*d[i] }
return(R)
}
krr <-
function(X, y, sigma2=NULL, lambdas=NULL)
{
X <- as.matrix(X)
n <- nrow(X)
p <- ncol(X)
if(is.null(lambdas)) { lambdas <- 10^seq(-8, 2,by=0.5) }
if(is.null(sigma2)) { sigma2 <- p }
X <- scale(X)
y <- scale(y)
K <- gausskernel(X, sigma2=sigma2)
eig <- eigen(K, symmetric=TRUE)
qty <- matrix(NA,n,n)
qty <- crossprod(eig$vectors, y)
looe <- double(length(lambdas))
coef <- matrix(data = NA, nrow = n, ncol = length(lambdas))
i <- 1
for(lambda in lambdas) {
diag <- 1/(eig$values + lambda)
qdiag <- multdiag(eig$vectors, diag)
coef[,i] <- qdiag %*% qty
ginvdiag <- rowSums(multdiag(eig$vectors^2, diag))
looe[i] <- mean((coef[,i]/ginvdiag)^2)
i <- i+1
}
looe.min <- min(looe)
lambda <- lambdas[which(looe == looe.min)]
coef <- coef[,which(looe == looe.min)]
yh <- K%*%coef
yh <- yh * attr(y,"scaled:scale") + attr(y,"scaled:center")
r <- list(K=K,
X=X,
y=y,
sigma2=sigma2,
coef=coef,
looe=looe.min,
lambda=lambda,
yh=yh
)
class(r) <- "krr"
return(r)
}
predict.krr <-
function(o, newdata)
{
if(class(o) != "krr") {
warning("Object is not of class 'krr'")
UseMethod("predict")
return(invisible(NULL))
}
newdata <- as.matrix(newdata)
if(ncol(o$X)!=ncol(newdata)) {
stop("Not the same number of variables btwn fitted krr object and new data")
}
newdata <- scale(newdata,center=attr(o$X,"scaled:center"),
scale=attr(o$X,"scaled:scale"))
n <- nrow(o$X)
nn <- nrow(newdata)
K <- gausskernel(rbind(newdata,o$X),sigma2=o$sigma2)[1:nn,(nn+1):(nn+n)]
K <- matrix(K,nrow=nn,byrow=FALSE)
yh <- K%*%o$coef
yh <- (yh * attr(o$y,"scaled:scale")) + attr(o$y,"scaled:center")
}
# Tests
test.multdiag <-
function()
{
A <- matrix(seq(from=1, to=5*5, by=1), nrow=5)
d <- seq(from=1, to=5, by=1)
B <- multdiag(A,d)
C <- A %*% diag(d)
identical(B,C)
}