mirror of
https://codeberg.org/mclemens/ubitxv6.git
synced 2025-02-21 06:57:27 -05:00
Remove code that was moved to tuner, update includes and pin names
This commit is contained in:
parent
1622d0ebe7
commit
a2eae89733
338
ubitxv6.ino
338
ubitxv6.ino
@ -34,12 +34,13 @@
|
||||
#include "menu.h"
|
||||
#include "menu_main.h"
|
||||
#include "morse.h"
|
||||
#include "pin_definitions.h"
|
||||
#include "nano_gui.h"
|
||||
#include "settings.h"
|
||||
#include "setup.h"
|
||||
#include "touch.h"
|
||||
#include "tuner.h"
|
||||
#include "ui_touch.h"
|
||||
#include "ubitx.h"
|
||||
|
||||
/**
|
||||
* The Arduino, unlike C/C++ on a regular computer with gigabytes of RAM, has very little memory.
|
||||
@ -58,218 +59,6 @@ char c[30];
|
||||
//during CAT commands, we will freeeze the display until CAT is disengaged
|
||||
unsigned char doingCAT = 0;
|
||||
|
||||
|
||||
/**
|
||||
* Below are the basic functions that control the uBitx. Understanding the functions before
|
||||
* you start hacking around
|
||||
*/
|
||||
|
||||
void saveVFOs()
|
||||
{
|
||||
SaveSettingsToEeprom();
|
||||
}
|
||||
|
||||
/**
|
||||
* Select the properly tx harmonic filters
|
||||
* The four harmonic filters use only three relays
|
||||
* the four LPFs cover 30-21 Mhz, 18 - 14 Mhz, 7-10 MHz and 3.5 to 5 Mhz
|
||||
* Briefly, it works like this,
|
||||
* - When KT1 is OFF, the 'off' position routes the PA output through the 30 MHz LPF
|
||||
* - When KT1 is ON, it routes the PA output to KT2. Which is why you will see that
|
||||
* the KT1 is on for the three other cases.
|
||||
* - When the KT1 is ON and KT2 is off, the off position of KT2 routes the PA output
|
||||
* to 18 MHz LPF (That also works for 14 Mhz)
|
||||
* - When KT1 is On, KT2 is On, it routes the PA output to KT3
|
||||
* - KT3, when switched on selects the 7-10 Mhz filter
|
||||
* - KT3 when switched off selects the 3.5-5 Mhz filter
|
||||
* See the circuit to understand this
|
||||
*/
|
||||
|
||||
void setTXFilters(unsigned long freq){
|
||||
|
||||
if (freq > 21000000L){ // the default filter is with 35 MHz cut-off
|
||||
digitalWrite(TX_LPF_A, 0);
|
||||
digitalWrite(TX_LPF_B, 0);
|
||||
digitalWrite(TX_LPF_C, 0);
|
||||
}
|
||||
else if (freq >= 14000000L){ //thrown the KT1 relay on, the 30 MHz LPF is bypassed and the 14-18 MHz LPF is allowd to go through
|
||||
digitalWrite(TX_LPF_A, 1);
|
||||
digitalWrite(TX_LPF_B, 0);
|
||||
digitalWrite(TX_LPF_C, 0);
|
||||
}
|
||||
else if (freq > 7000000L){
|
||||
digitalWrite(TX_LPF_A, 0);
|
||||
digitalWrite(TX_LPF_B, 1);
|
||||
digitalWrite(TX_LPF_C, 0);
|
||||
}
|
||||
else {
|
||||
digitalWrite(TX_LPF_A, 0);
|
||||
digitalWrite(TX_LPF_B, 0);
|
||||
digitalWrite(TX_LPF_C, 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void setTXFilters_v5(unsigned long freq){
|
||||
|
||||
if (freq > 21000000L){ // the default filter is with 35 MHz cut-off
|
||||
digitalWrite(TX_LPF_A, 0);
|
||||
digitalWrite(TX_LPF_B, 0);
|
||||
digitalWrite(TX_LPF_C, 0);
|
||||
}
|
||||
else if (freq >= 14000000L){ //thrown the KT1 relay on, the 30 MHz LPF is bypassed and the 14-18 MHz LPF is allowd to go through
|
||||
digitalWrite(TX_LPF_A, 1);
|
||||
digitalWrite(TX_LPF_B, 0);
|
||||
digitalWrite(TX_LPF_C, 0);
|
||||
}
|
||||
else if (freq > 7000000L){
|
||||
digitalWrite(TX_LPF_A, 0);
|
||||
digitalWrite(TX_LPF_B, 1);
|
||||
digitalWrite(TX_LPF_C, 0);
|
||||
}
|
||||
else {
|
||||
digitalWrite(TX_LPF_A, 0);
|
||||
digitalWrite(TX_LPF_B, 0);
|
||||
digitalWrite(TX_LPF_C, 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* This is the most frequently called function that configures the
|
||||
* radio to a particular frequeny, sideband and sets up the transmit filters
|
||||
*
|
||||
* The transmit filter relays are powered up only during the tx so they dont
|
||||
* draw any current during rx.
|
||||
*
|
||||
* The carrier oscillator of the detector/modulator is permanently fixed at
|
||||
* uppper sideband. The sideband selection is done by placing the second oscillator
|
||||
* either 12 Mhz below or above the 45 Mhz signal thereby inverting the sidebands
|
||||
* through mixing of the second local oscillator.
|
||||
*/
|
||||
|
||||
void setFrequency(const unsigned long freq,
|
||||
const bool transmit){
|
||||
static const unsigned long FIRST_IF = 45005000UL;
|
||||
|
||||
setTXFilters(freq);
|
||||
|
||||
//Nominal values for the oscillators
|
||||
uint32_t local_osc_freq = FIRST_IF + freq;
|
||||
uint32_t ssb_osc_freq = FIRST_IF;//will be changed depending on sideband
|
||||
uint32_t bfo_osc_freq = globalSettings.usbCarrierFreq;
|
||||
|
||||
if(TuningMode_e::TUNE_CW == globalSettings.tuningMode){
|
||||
if(transmit){
|
||||
//We don't do any mixing or converting when transmitting
|
||||
local_osc_freq = freq;
|
||||
ssb_osc_freq = 0;
|
||||
bfo_osc_freq = 0;
|
||||
}
|
||||
else{
|
||||
//We offset when receiving CW so that it's audible
|
||||
if(VfoMode_e::VFO_MODE_USB == GetActiveVfoMode()){
|
||||
local_osc_freq -= globalSettings.cwSideToneFreq;
|
||||
ssb_osc_freq += globalSettings.usbCarrierFreq;
|
||||
}
|
||||
else{
|
||||
local_osc_freq += globalSettings.cwSideToneFreq;
|
||||
ssb_osc_freq -= globalSettings.usbCarrierFreq;
|
||||
}
|
||||
}
|
||||
}
|
||||
else{//SSB mode
|
||||
if(VfoMode_e::VFO_MODE_USB == GetActiveVfoMode()){
|
||||
ssb_osc_freq += globalSettings.usbCarrierFreq;
|
||||
}
|
||||
else{
|
||||
ssb_osc_freq -= globalSettings.usbCarrierFreq;
|
||||
}
|
||||
}
|
||||
|
||||
si5351bx_setfreq(2, local_osc_freq);
|
||||
si5351bx_setfreq(1, ssb_osc_freq);
|
||||
si5351bx_setfreq(0, bfo_osc_freq);
|
||||
|
||||
SetActiveVfoFreq(freq);
|
||||
}
|
||||
|
||||
/**
|
||||
* startTx is called by the PTT, cw keyer and CAT protocol to
|
||||
* put the uBitx in tx mode. It takes care of rit settings, sideband settings
|
||||
* Note: In cw mode, doesnt key the radio, only puts it in tx mode
|
||||
* CW offest is calculated as lower than the operating frequency when in LSB mode, and vice versa in USB mode
|
||||
*/
|
||||
|
||||
void startTx(TuningMode_e tx_mode){
|
||||
globalSettings.tuningMode = tx_mode;
|
||||
|
||||
if (globalSettings.ritOn){
|
||||
//save the current as the rx frequency
|
||||
uint32_t rit_tx_freq = globalSettings.ritFrequency;
|
||||
globalSettings.ritFrequency = GetActiveVfoFreq();
|
||||
setFrequency(rit_tx_freq,true);
|
||||
}
|
||||
else{
|
||||
if(globalSettings.splitOn){
|
||||
if(Vfo_e::VFO_B == globalSettings.activeVfo){
|
||||
globalSettings.activeVfo = Vfo_e::VFO_A;
|
||||
}
|
||||
else{
|
||||
globalSettings.activeVfo = Vfo_e::VFO_B;
|
||||
}
|
||||
}
|
||||
setFrequency(GetActiveVfoFreq(),true);
|
||||
}
|
||||
|
||||
digitalWrite(TX_RX, 1);//turn on the tx
|
||||
globalSettings.txActive = true;
|
||||
drawTx();
|
||||
}
|
||||
|
||||
void stopTx(){
|
||||
digitalWrite(TX_RX, 0);//turn off the tx
|
||||
globalSettings.txActive = false;
|
||||
|
||||
if(globalSettings.ritOn){
|
||||
uint32_t rit_rx_freq = globalSettings.ritFrequency;
|
||||
globalSettings.ritFrequency = GetActiveVfoFreq();
|
||||
setFrequency(rit_rx_freq);
|
||||
}
|
||||
else{
|
||||
if(globalSettings.splitOn){
|
||||
if(Vfo_e::VFO_B == globalSettings.activeVfo){
|
||||
globalSettings.activeVfo = Vfo_e::VFO_A;
|
||||
}
|
||||
else{
|
||||
globalSettings.activeVfo = Vfo_e::VFO_B;
|
||||
}
|
||||
}
|
||||
setFrequency(GetActiveVfoFreq());
|
||||
}
|
||||
drawTx();
|
||||
}
|
||||
|
||||
/**
|
||||
* ritEnable is called with a frequency parameter that determines
|
||||
* what the tx frequency will be
|
||||
*/
|
||||
void ritEnable(unsigned long freq){
|
||||
globalSettings.ritOn = true;
|
||||
//save the non-rit frequency back into the VFO memory
|
||||
//as RIT is a temporary shift, this is not saved to EEPROM
|
||||
globalSettings.ritFrequency = freq;
|
||||
}
|
||||
|
||||
// this is called by the RIT menu routine
|
||||
void ritDisable(){
|
||||
if(globalSettings.ritOn){
|
||||
globalSettings.ritOn = false;
|
||||
setFrequency(globalSettings.ritFrequency);
|
||||
updateDisplay();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Basic User Interface Routines. These check the front panel for any activity
|
||||
*/
|
||||
@ -286,12 +75,12 @@ void checkPTT(){
|
||||
return;
|
||||
}
|
||||
|
||||
if(digitalRead(PTT) == 0 && !globalSettings.txActive){
|
||||
if(digitalRead(PIN_PTT) == 0 && !globalSettings.txActive){
|
||||
startTx(TuningMode_e::TUNE_SSB);
|
||||
delay(50); //debounce the PTT
|
||||
}
|
||||
|
||||
if (digitalRead(PTT) == 1 && globalSettings.txActive)
|
||||
if (digitalRead(PIN_PTT) == 1 && globalSettings.txActive)
|
||||
stopTx();
|
||||
}
|
||||
|
||||
@ -319,87 +108,6 @@ ButtonPress_e checkButton(){
|
||||
}
|
||||
}
|
||||
|
||||
void switchVFO(Vfo_e new_vfo){
|
||||
ritDisable();//If we are in RIT mode, we need to disable it before setting the active VFO so that the correct VFO gets it's frequency restored
|
||||
|
||||
globalSettings.activeVfo = new_vfo;
|
||||
setFrequency(GetActiveVfoFreq());
|
||||
redrawVFOs();
|
||||
saveVFOs();
|
||||
}
|
||||
|
||||
/**
|
||||
* The tuning jumps by 50 Hz on each step when you tune slowly
|
||||
* As you spin the encoder faster, the jump size also increases
|
||||
* This way, you can quickly move to another band by just spinning the
|
||||
* tuning knob
|
||||
*/
|
||||
|
||||
void doTuning(){
|
||||
static unsigned long prev_freq;
|
||||
static unsigned long nextFrequencyUpdate = 0;
|
||||
|
||||
unsigned long now = millis();
|
||||
|
||||
if (now >= nextFrequencyUpdate && prev_freq != GetActiveVfoFreq()){
|
||||
updateDisplay();
|
||||
nextFrequencyUpdate = now + 100;
|
||||
prev_freq = GetActiveVfoFreq();
|
||||
}
|
||||
|
||||
int s = enc_read();
|
||||
if (!s)
|
||||
return;
|
||||
|
||||
//Serial.println(s);
|
||||
|
||||
doingCAT = 0; // go back to manual mode if you were doing CAT
|
||||
prev_freq = GetActiveVfoFreq();
|
||||
uint32_t new_freq = prev_freq;
|
||||
|
||||
if (s > 10 || s < -10){
|
||||
new_freq += 200L * s;
|
||||
}
|
||||
else if (s > 5 || s < -5){
|
||||
new_freq += 100L * s;
|
||||
}
|
||||
else{
|
||||
new_freq += 50L * s;
|
||||
}
|
||||
|
||||
//Transition from below to above the traditional threshold for USB
|
||||
if(prev_freq < THRESHOLD_USB_LSB && new_freq >= THRESHOLD_USB_LSB){
|
||||
SetActiveVfoMode(VfoMode_e::VFO_MODE_USB);
|
||||
}
|
||||
|
||||
//Transition from aboveo to below the traditional threshold for USB
|
||||
if(prev_freq >= THRESHOLD_USB_LSB && new_freq < THRESHOLD_USB_LSB){
|
||||
SetActiveVfoMode(VfoMode_e::VFO_MODE_LSB);
|
||||
}
|
||||
|
||||
setFrequency(new_freq);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* RIT only steps back and forth by 100 hz at a time
|
||||
*/
|
||||
void doRIT(){
|
||||
int knob = enc_read();
|
||||
uint32_t old_freq = GetActiveVfoFreq();
|
||||
uint32_t new_freq = old_freq;
|
||||
|
||||
if (knob < 0)
|
||||
new_freq -= 100l;
|
||||
else if (knob > 0)
|
||||
new_freq += 100;
|
||||
|
||||
if (old_freq != new_freq){
|
||||
setFrequency(new_freq);
|
||||
updateDisplay();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The settings are read from EEPROM. The first time around, the values may not be
|
||||
* present or out of range, in this case, some intelligent defaults are copied into the
|
||||
@ -415,33 +123,33 @@ void initPorts(){
|
||||
analogReference(DEFAULT);
|
||||
|
||||
//??
|
||||
pinMode(ENC_A, INPUT_PULLUP);
|
||||
pinMode(ENC_B, INPUT_PULLUP);
|
||||
pinMode(FBUTTON, INPUT_PULLUP);
|
||||
pinMode(PIN_ENC_A, INPUT_PULLUP);
|
||||
pinMode(PIN_ENC_B, INPUT_PULLUP);
|
||||
pinMode(PIN_ENC_PUSH_BUTTON, INPUT_PULLUP);
|
||||
enc_setup();
|
||||
|
||||
//configure the function button to use the external pull-up
|
||||
// pinMode(FBUTTON, INPUT);
|
||||
// digitalWrite(FBUTTON, HIGH);
|
||||
// pinMode(PIN_ENC_PUSH_BUTTON, INPUT);
|
||||
// digitalWrite(PIN_ENC_PUSH_BUTTON, HIGH);
|
||||
|
||||
pinMode(PTT, INPUT_PULLUP);
|
||||
// pinMode(ANALOG_KEYER, INPUT_PULLUP);
|
||||
pinMode(PIN_PTT, INPUT_PULLUP);
|
||||
// pinMode(PIN_ANALOG_KEYER, INPUT_PULLUP);
|
||||
|
||||
pinMode(CW_TONE, OUTPUT);
|
||||
digitalWrite(CW_TONE, 0);
|
||||
pinMode(PIN_CW_TONE, OUTPUT);
|
||||
digitalWrite(PIN_CW_TONE, 0);
|
||||
|
||||
pinMode(TX_RX,OUTPUT);
|
||||
digitalWrite(TX_RX, 0);
|
||||
pinMode(PIN_TX_RXn,OUTPUT);
|
||||
digitalWrite(PIN_TX_RXn, 0);
|
||||
|
||||
pinMode(TX_LPF_A, OUTPUT);
|
||||
pinMode(TX_LPF_B, OUTPUT);
|
||||
pinMode(TX_LPF_C, OUTPUT);
|
||||
digitalWrite(TX_LPF_A, 0);
|
||||
digitalWrite(TX_LPF_B, 0);
|
||||
digitalWrite(TX_LPF_C, 0);
|
||||
pinMode(PIN_TX_LPF_A, OUTPUT);
|
||||
pinMode(PIN_TX_LPF_B, OUTPUT);
|
||||
pinMode(PIN_TX_LPF_C, OUTPUT);
|
||||
digitalWrite(PIN_TX_LPF_A, 0);
|
||||
digitalWrite(PIN_TX_LPF_B, 0);
|
||||
digitalWrite(PIN_TX_LPF_C, 0);
|
||||
|
||||
pinMode(CW_KEY, OUTPUT);
|
||||
digitalWrite(CW_KEY, 0);
|
||||
pinMode(PIN_CW_KEY, OUTPUT);
|
||||
digitalWrite(PIN_CW_KEY, 0);
|
||||
}
|
||||
|
||||
void setup()
|
||||
|
Loading…
x
Reference in New Issue
Block a user