ubitxv6/nano_gui.cpp

336 lines
9.1 KiB
C++
Raw Normal View History

#include <Arduino.h>
#include "settings.h"
#include "ubitx.h"
#include "nano_gui.h"
#include <SPI.h>
#include <avr/pgmspace.h>
struct Point ts_point;
/*
* This formats the frequency given in f
*/
void formatFreq(uint32_t freq, char* buff, uint16_t buff_size) {
memset(buff, 0, buff_size);
ultoa(freq, buff, DEC);
uint8_t num_digits = strlen(buff);
const uint8_t num_spacers = (num_digits-1) / 3;
const uint8_t num_leading_digits_raw = num_digits % 3;
const uint8_t num_leading_digits = (0 == num_leading_digits_raw) ? 3 : num_leading_digits_raw;
if(0 == num_spacers){
return;
}
buff += num_leading_digits;
num_digits -= num_leading_digits;
for(int i = num_digits-1; i >= 0; --i){
buff[i + (i/3 + 1)] = buff[i];
}
for(unsigned int i = 0; i < num_spacers; ++i){
memcpy_P(buff,F("."),1);
buff += 4;
}
}
void readTouchCalibration(){
LoadSettingsFromEeprom();
/* for debugging
Serial.print(globalSettings.touchSlopeX); Serial.print(' ');
Serial.print(globalSettings.touchSlopeY); Serial.print(' ');
Serial.print(globalSettings.touchOffsetX); Serial.print(' ');
Serial.println(globalSettings.touchOffsetY); Serial.println(' ');
//*/
}
void writeTouchCalibration(){
SaveSettingsToEeprom();
}
#define Z_THRESHOLD 400
#define Z_THRESHOLD_INT 75
#define MSEC_THRESHOLD 3
static uint32_t msraw=0x80000000;
static int16_t xraw=0, yraw=0, zraw=0;
static uint8_t rotation = 1;
static int16_t touch_besttwoavg( int16_t x , int16_t y , int16_t z ) {
int16_t da, db, dc;
int16_t reta = 0;
if ( x > y ) da = x - y; else da = y - x;
if ( x > z ) db = x - z; else db = z - x;
if ( z > y ) dc = z - y; else dc = y - z;
if ( da <= db && da <= dc ) reta = (x + y) >> 1;
else if ( db <= da && db <= dc ) reta = (x + z) >> 1;
else reta = (y + z) >> 1; // else if ( dc <= da && dc <= db ) reta = (x + y) >> 1;
return (reta);
}
static void touch_update(){
int16_t data[6];
uint32_t now = millis();
if (now - msraw < MSEC_THRESHOLD) return;
SPI.setClockDivider(SPI_CLOCK_DIV8);//2MHz
digitalWrite(CS_PIN, LOW);
SPI.transfer(0xB1 /* Z1 */);
int16_t z1 = SPI.transfer16(0xC1 /* Z2 */) >> 3;
int z = z1 + 4095;
int16_t z2 = SPI.transfer16(0x91 /* X */) >> 3;
z -= z2;
if (z >= Z_THRESHOLD) {
SPI.transfer16(0x91 /* X */); // dummy X measure, 1st is always noisy
data[0] = SPI.transfer16(0xD1 /* Y */) >> 3;
data[1] = SPI.transfer16(0x91 /* X */) >> 3; // make 3 x-y measurements
data[2] = SPI.transfer16(0xD1 /* Y */) >> 3;
data[3] = SPI.transfer16(0x91 /* X */) >> 3;
}
else data[0] = data[1] = data[2] = data[3] = 0; // Compiler warns these values may be used unset on early exit.
data[4] = SPI.transfer16(0xD0 /* Y */) >> 3; // Last Y touch power down
data[5] = SPI.transfer16(0) >> 3;
digitalWrite(CS_PIN, HIGH);
SPI.setClockDivider(SPI_CLOCK_DIV2);//Return to full speed for TFT
if (z < 0) z = 0;
if (z < Z_THRESHOLD) { // if ( !touched ) {
// Serial.println();
zraw = 0;
return;
}
zraw = z;
int16_t x = touch_besttwoavg( data[0], data[2], data[4] );
int16_t y = touch_besttwoavg( data[1], data[3], data[5] );
//Serial.printf(" %d,%d", x, y);
//Serial.println();
if (z >= Z_THRESHOLD) {
msraw = now; // good read completed, set wait
switch (rotation) {
case 0:
xraw = 4095 - y;
yraw = x;
break;
case 1:
xraw = x;
yraw = y;
break;
case 2:
xraw = y;
yraw = 4095 - x;
break;
default: // 3
xraw = 4095 - x;
yraw = 4095 - y;
}
}
}
bool readTouch(){
touch_update();
if (zraw >= Z_THRESHOLD) {
ts_point.x = xraw;
ts_point.y = yraw;
//Serial.print(ts_point.x); Serial.print(",");Serial.println(ts_point.y);
return true;
}
return false;
}
void scaleTouch(struct Point *p){
p->x = ((long)(p->x - globalSettings.touchOffsetX) * 10L)/ (long)globalSettings.touchSlopeX;
p->y = ((long)(p->y - globalSettings.touchOffsetY) * 10L)/ (long)globalSettings.touchSlopeY;
//Serial.print(p->x); Serial.print(",");Serial.println(p->y);
}
/*****************
* Begin TFT functions
*****************/
#define ILI9341_CS_PIN TFT_CS
#define ILI9341_DC_PIN TFT_DC
#include "PDQ_MinLib/PDQ_ILI9341.h"
PDQ_ILI9341 tft;
#include "nano_font.h"
void xpt2046_Init(){
pinMode(CS_PIN, OUTPUT);
digitalWrite(CS_PIN, HIGH);
}
void displayInit(void){
//Pulling this low 6 times should exit deep sleep mode
pinMode(TFT_CS,OUTPUT);
for(uint8_t i = 0; i < 6; ++i){
digitalWrite(TFT_CS,HIGH);
digitalWrite(TFT_CS,LOW);
}
digitalWrite(TFT_CS,HIGH);//Disable writing for now
tft.begin();
tft.setFont(ubitx_font);
2020-01-19 15:56:47 -05:00
tft.setTextWrap(true);
tft.setTextColor(DISPLAY_GREEN,DISPLAY_BLACK);
tft.setTextSize(1);
tft.setRotation(1);
xpt2046_Init();
}
void displayPixel(unsigned int x, unsigned int y, unsigned int c){
tft.drawPixel(x,y,c);
}
void displayHline(unsigned int x, unsigned int y, unsigned int w, unsigned int c){
tft.drawFastHLine(x,y,w,c);
}
void displayVline(unsigned int x, unsigned int y, unsigned int l, unsigned int c){
tft.drawFastVLine(x,y,l,c);
}
void displayClear(unsigned int color){
tft.fillRect(0,0,320,240,color);
}
void displayRect(unsigned int x,unsigned int y,unsigned int w,unsigned int h,unsigned int c){
tft.drawRect(x,y,w,h,c);
}
void displayFillrect(unsigned int x,unsigned int y,unsigned int w,unsigned int h,unsigned int c){
tft.fillRect(x,y,w,h,c);
}
void displayChar(int16_t x, int16_t y, unsigned char c, uint16_t color, uint16_t bg) {
tft.drawCharGFX(x,y,c,color,bg,1);
}
2020-01-19 15:56:47 -05:00
void displayRawText(char *text, int x1, int y1, int w, int color, int background){
tft.setTextColor(color,background);
tft.setCursor(x1,y1);
tft.setBound(x1,x1+w);
tft.print(text);
}
void displayText(char *text, int x1, int y1, int w, int h, int color, int background, int border) {
displayFillrect(x1, y1, w ,h, background);
displayRect(x1, y1, w ,h, border);
int16_t x1_out;
int16_t y1_out;
uint16_t width_out;
uint16_t height_out;
2020-01-19 15:56:47 -05:00
tft.getTextBounds(text,x1,y1,&x1_out,&y1_out,&width_out,&height_out,w);
x1 += (w - ( (int32_t)width_out + (x1_out-x1)))/2;
y1 += (ubitx_font->yAdvance + h - ( (int32_t)height_out))/2;
2020-01-19 15:56:47 -05:00
displayRawText(text,x1,y1,w,color,background);
}
void setupTouch(){
int x1, y1, x2, y2, x3, y3, x4, y4;
displayClear(DISPLAY_BLACK);
strncpy_P(b,(const char*)F("Click on the cross"),sizeof(b));
displayText(b, 20,100, 200, 50, DISPLAY_WHITE, DISPLAY_BLACK, DISPLAY_BLACK);
// TOP-LEFT
displayHline(10,20,20,DISPLAY_WHITE);
displayVline(20,10,20, DISPLAY_WHITE);
while(!readTouch())
delay(100);
while(readTouch())
delay(100);
x1 = ts_point.x;
y1 = ts_point.y;
//rubout the previous one
displayHline(10,20,20,DISPLAY_BLACK);
displayVline(20,10,20, DISPLAY_BLACK);
delay(1000);
//TOP RIGHT
displayHline(290,20,20,DISPLAY_WHITE);
displayVline(300,10,20, DISPLAY_WHITE);
while(!readTouch())
delay(100);
while(readTouch())
delay(100);
x2 = ts_point.x;
y2 = ts_point.y;
displayHline(290,20,20,DISPLAY_BLACK);
displayVline(300,10,20, DISPLAY_BLACK);
delay(1000);
//BOTTOM LEFT
displayHline(10,220,20,DISPLAY_WHITE);
displayVline(20,210,20, DISPLAY_WHITE);
while(!readTouch())
delay(100);
x3 = ts_point.x;
y3 = ts_point.y;
while(readTouch())
delay(100);
displayHline(10,220,20,DISPLAY_BLACK);
displayVline(20,210,20, DISPLAY_BLACK);
delay(1000);
//BOTTOM RIGHT
displayHline(290,220,20,DISPLAY_WHITE);
displayVline(300,210,20, DISPLAY_WHITE);
while(!readTouch())
delay(100);
x4 = ts_point.x;
y4 = ts_point.y;
displayHline(290,220,20,DISPLAY_BLACK);
displayVline(300,210,20, DISPLAY_BLACK);
// we average two readings and divide them by half and store them as scaled integers 10 times their actual, fractional value
//the x points are located at 20 and 300 on x axis, hence, the delta x is 280, we take 28 instead, to preserve fractional value,
//there are two readings (x1,x2) and (x3, x4). Hence, we have to divide by 28 * 2 = 56
globalSettings.touchSlopeX = ((x4 - x3) + (x2 - x1))/56;
//the y points are located at 20 and 220 on the y axis, hence, the delta is 200. we take it as 20 instead, to preserve the fraction value
//there are two readings (y1, y2) and (y3, y4). Hence we have to divide by 20 * 2 = 40
globalSettings.touchSlopeY = ((y3 - y1) + (y4 - y2))/40;
//x1, y1 is at 20 pixels
globalSettings.touchOffsetX = x1 + -((20 * globalSettings.touchSlopeX)/10);
globalSettings.touchOffsetY = y1 + -((20 * globalSettings.touchSlopeY)/10);
/*
Serial.print(x1);Serial.print(':');Serial.println(y1);
Serial.print(x2);Serial.print(':');Serial.println(y2);
Serial.print(x3);Serial.print(':');Serial.println(y3);
Serial.print(x4);Serial.print(':');Serial.println(y4);
//for debugging
Serial.print(globalSettings.touchSlopeX); Serial.print(' ');
Serial.print(globalSettings.touchSlopeY); Serial.print(' ');
Serial.print(globalSettings.touchOffsetX); Serial.print(' ');
Serial.println(globalSettings.touchOffsetY); Serial.println(' ');
*/
writeTouchCalibration();
displayClear(DISPLAY_BLACK);
}