1
0
mirror of https://github.com/v2fly/v2ray-core.git synced 2025-01-05 08:56:49 -05:00
v2fly/external/github.com/marten-seemann/qtls/key_agreement.go
2019-01-17 15:33:18 +01:00

403 lines
12 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"crypto"
"crypto/elliptic"
"crypto/md5"
"crypto/rsa"
"crypto/sha1"
"errors"
"io"
"math/big"
"golang.org/x/crypto/curve25519"
)
var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
// rsaKeyAgreement implements the standard TLS key agreement where the client
// encrypts the pre-master secret to the server's public key.
type rsaKeyAgreement struct{}
func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, sk crypto.PrivateKey, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
return nil, nil
}
func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, sk crypto.PrivateKey, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
ciphertext := ckx.ciphertext
if version != VersionSSL30 {
ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
if ciphertextLen != len(ckx.ciphertext)-2 {
return nil, errClientKeyExchange
}
ciphertext = ckx.ciphertext[2:]
}
priv, ok := sk.(crypto.Decrypter)
if !ok {
return nil, errors.New("tls: certificate private key does not implement crypto.Decrypter")
}
// Perform constant time RSA PKCS#1 v1.5 decryption
preMasterSecret, err := priv.Decrypt(config.rand(), ciphertext, &rsa.PKCS1v15DecryptOptions{SessionKeyLen: 48})
if err != nil {
return nil, err
}
// We don't check the version number in the premaster secret. For one,
// by checking it, we would leak information about the validity of the
// encrypted pre-master secret. Secondly, it provides only a small
// benefit against a downgrade attack and some implementations send the
// wrong version anyway. See the discussion at the end of section
// 7.4.7.1 of RFC 4346.
return preMasterSecret, nil
}
func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, pk crypto.PublicKey, skx *serverKeyExchangeMsg) error {
return errors.New("tls: unexpected ServerKeyExchange")
}
func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, pk crypto.PublicKey) ([]byte, *clientKeyExchangeMsg, error) {
preMasterSecret := make([]byte, 48)
preMasterSecret[0] = byte(clientHello.vers >> 8)
preMasterSecret[1] = byte(clientHello.vers)
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
if err != nil {
return nil, nil, err
}
encrypted, err := rsa.EncryptPKCS1v15(config.rand(), pk.(*rsa.PublicKey), preMasterSecret)
if err != nil {
return nil, nil, err
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, len(encrypted)+2)
ckx.ciphertext[0] = byte(len(encrypted) >> 8)
ckx.ciphertext[1] = byte(len(encrypted))
copy(ckx.ciphertext[2:], encrypted)
return preMasterSecret, ckx, nil
}
// sha1Hash calculates a SHA1 hash over the given byte slices.
func sha1Hash(slices [][]byte) []byte {
hsha1 := sha1.New()
for _, slice := range slices {
hsha1.Write(slice)
}
return hsha1.Sum(nil)
}
// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
// concatenation of an MD5 and SHA1 hash.
func md5SHA1Hash(slices [][]byte) []byte {
md5sha1 := make([]byte, md5.Size+sha1.Size)
hmd5 := md5.New()
for _, slice := range slices {
hmd5.Write(slice)
}
copy(md5sha1, hmd5.Sum(nil))
copy(md5sha1[md5.Size:], sha1Hash(slices))
return md5sha1
}
// hashForServerKeyExchange hashes the given slices and returns their digest
// using the given hash function.
func hashForServerKeyExchange(sigType uint8, hashFunc crypto.Hash, version uint16, slices ...[]byte) ([]byte, error) {
if version >= VersionTLS12 {
h := hashFunc.New()
for _, slice := range slices {
h.Write(slice)
}
digest := h.Sum(nil)
return digest, nil
}
if sigType == signatureECDSA {
return sha1Hash(slices), nil
}
return md5SHA1Hash(slices), nil
}
func curveForCurveID(id CurveID) (elliptic.Curve, bool) {
switch id {
case CurveP256:
return elliptic.P256(), true
case CurveP384:
return elliptic.P384(), true
case CurveP521:
return elliptic.P521(), true
default:
return nil, false
}
}
// ecdheKeyAgreement implements a TLS key agreement where the server
// generates an ephemeral EC public/private key pair and signs it. The
// pre-master secret is then calculated using ECDH. The signature may
// either be ECDSA or RSA.
type ecdheKeyAgreement struct {
version uint16
isRSA bool
privateKey []byte
curveid CurveID
// publicKey is used to store the peer's public value when X25519 is
// being used.
publicKey []byte
// x and y are used to store the peer's public value when one of the
// NIST curves is being used.
x, y *big.Int
}
func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, sk crypto.PrivateKey, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
preferredCurves := config.curvePreferences()
NextCandidate:
for _, candidate := range preferredCurves {
for _, c := range clientHello.supportedCurves {
if candidate == c {
ka.curveid = c
break NextCandidate
}
}
}
if ka.curveid == 0 {
return nil, errors.New("tls: no supported elliptic curves offered")
}
var ecdhePublic []byte
if ka.curveid == X25519 {
var scalar, public [32]byte
if _, err := io.ReadFull(config.rand(), scalar[:]); err != nil {
return nil, err
}
curve25519.ScalarBaseMult(&public, &scalar)
ka.privateKey = scalar[:]
ecdhePublic = public[:]
} else {
curve, ok := curveForCurveID(ka.curveid)
if !ok {
return nil, errors.New("tls: preferredCurves includes unsupported curve")
}
var x, y *big.Int
var err error
ka.privateKey, x, y, err = elliptic.GenerateKey(curve, config.rand())
if err != nil {
return nil, err
}
ecdhePublic = elliptic.Marshal(curve, x, y)
}
// http://tools.ietf.org/html/rfc4492#section-5.4
serverECDHParams := make([]byte, 1+2+1+len(ecdhePublic))
serverECDHParams[0] = 3 // named curve
serverECDHParams[1] = byte(ka.curveid >> 8)
serverECDHParams[2] = byte(ka.curveid)
serverECDHParams[3] = byte(len(ecdhePublic))
copy(serverECDHParams[4:], ecdhePublic)
priv, ok := sk.(crypto.Signer)
if !ok {
return nil, errors.New("tls: certificate private key does not implement crypto.Signer")
}
signatureAlgorithm, sigType, hashFunc, err := pickSignatureAlgorithm(priv.Public(), clientHello.supportedSignatureAlgorithms, supportedSignatureAlgorithms, ka.version)
if err != nil {
return nil, err
}
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
return nil, errors.New("tls: certificate cannot be used with the selected cipher suite")
}
digest, err := hashForServerKeyExchange(sigType, hashFunc, ka.version, clientHello.random, hello.random, serverECDHParams)
if err != nil {
return nil, err
}
var sig []byte
signOpts := crypto.SignerOpts(hashFunc)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: hashFunc}
}
sig, err = priv.Sign(config.rand(), digest, signOpts)
if err != nil {
return nil, errors.New("tls: failed to sign ECDHE parameters: " + err.Error())
}
skx := new(serverKeyExchangeMsg)
sigAndHashLen := 0
if ka.version >= VersionTLS12 {
sigAndHashLen = 2
}
skx.key = make([]byte, len(serverECDHParams)+sigAndHashLen+2+len(sig))
copy(skx.key, serverECDHParams)
k := skx.key[len(serverECDHParams):]
if ka.version >= VersionTLS12 {
k[0] = byte(signatureAlgorithm >> 8)
k[1] = byte(signatureAlgorithm)
k = k[2:]
}
k[0] = byte(len(sig) >> 8)
k[1] = byte(len(sig))
copy(k[2:], sig)
return skx, nil
}
func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, sk crypto.PrivateKey, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
return nil, errClientKeyExchange
}
if ka.curveid == X25519 {
if len(ckx.ciphertext) != 1+32 {
return nil, errClientKeyExchange
}
var theirPublic, sharedKey, scalar [32]byte
copy(theirPublic[:], ckx.ciphertext[1:])
copy(scalar[:], ka.privateKey)
curve25519.ScalarMult(&sharedKey, &scalar, &theirPublic)
return sharedKey[:], nil
}
curve, ok := curveForCurveID(ka.curveid)
if !ok {
panic("internal error")
}
x, y := elliptic.Unmarshal(curve, ckx.ciphertext[1:]) // Unmarshal also checks whether the given point is on the curve
if x == nil {
return nil, errClientKeyExchange
}
x, _ = curve.ScalarMult(x, y, ka.privateKey)
curveSize := (curve.Params().BitSize + 7) >> 3
xBytes := x.Bytes()
if len(xBytes) == curveSize {
return xBytes, nil
}
preMasterSecret := make([]byte, curveSize)
copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
return preMasterSecret, nil
}
func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, pk crypto.PublicKey, skx *serverKeyExchangeMsg) error {
if len(skx.key) < 4 {
return errServerKeyExchange
}
if skx.key[0] != 3 { // named curve
return errors.New("tls: server selected unsupported curve")
}
ka.curveid = CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
publicLen := int(skx.key[3])
if publicLen+4 > len(skx.key) {
return errServerKeyExchange
}
serverECDHParams := skx.key[:4+publicLen]
publicKey := serverECDHParams[4:]
sig := skx.key[4+publicLen:]
if len(sig) < 2 {
return errServerKeyExchange
}
if ka.curveid == X25519 {
if len(publicKey) != 32 {
return errors.New("tls: bad X25519 public value")
}
ka.publicKey = publicKey
} else {
curve, ok := curveForCurveID(ka.curveid)
if !ok {
return errors.New("tls: server selected unsupported curve")
}
ka.x, ka.y = elliptic.Unmarshal(curve, publicKey) // Unmarshal also checks whether the given point is on the curve
if ka.x == nil {
return errServerKeyExchange
}
}
var signatureAlgorithm SignatureScheme
if ka.version >= VersionTLS12 {
// handle SignatureAndHashAlgorithm
signatureAlgorithm = SignatureScheme(sig[0])<<8 | SignatureScheme(sig[1])
sig = sig[2:]
if len(sig) < 2 {
return errServerKeyExchange
}
}
_, sigType, hashFunc, err := pickSignatureAlgorithm(pk, []SignatureScheme{signatureAlgorithm}, clientHello.supportedSignatureAlgorithms, ka.version)
if err != nil {
return err
}
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
return errServerKeyExchange
}
sigLen := int(sig[0])<<8 | int(sig[1])
if sigLen+2 != len(sig) {
return errServerKeyExchange
}
sig = sig[2:]
digest, err := hashForServerKeyExchange(sigType, hashFunc, ka.version, clientHello.random, serverHello.random, serverECDHParams)
if err != nil {
return err
}
return verifyHandshakeSignature(sigType, pk, hashFunc, digest, sig)
}
func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, pk crypto.PublicKey) ([]byte, *clientKeyExchangeMsg, error) {
if ka.curveid == 0 {
return nil, nil, errors.New("tls: missing ServerKeyExchange message")
}
var serialized, preMasterSecret []byte
if ka.curveid == X25519 {
var ourPublic, theirPublic, sharedKey, scalar [32]byte
if _, err := io.ReadFull(config.rand(), scalar[:]); err != nil {
return nil, nil, err
}
copy(theirPublic[:], ka.publicKey)
curve25519.ScalarBaseMult(&ourPublic, &scalar)
curve25519.ScalarMult(&sharedKey, &scalar, &theirPublic)
serialized = ourPublic[:]
preMasterSecret = sharedKey[:]
} else {
curve, ok := curveForCurveID(ka.curveid)
if !ok {
panic("internal error")
}
priv, mx, my, err := elliptic.GenerateKey(curve, config.rand())
if err != nil {
return nil, nil, err
}
x, _ := curve.ScalarMult(ka.x, ka.y, priv)
preMasterSecret = make([]byte, (curve.Params().BitSize+7)>>3)
xBytes := x.Bytes()
copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
serialized = elliptic.Marshal(curve, mx, my)
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, 1+len(serialized))
ckx.ciphertext[0] = byte(len(serialized))
copy(ckx.ciphertext[1:], serialized)
return preMasterSecret, ckx, nil
}