1
0
mirror of https://github.com/v2fly/v2ray-core.git synced 2024-06-29 18:45:23 +00:00
v2fly/transport/internet/kcp/kcp.go
2016-06-30 11:19:35 +02:00

578 lines
13 KiB
Go

// Package kcp - A Fast and Reliable ARQ Protocol
//
// Acknowledgement:
// skywind3000@github for inventing the KCP protocol
// xtaci@github for translating to Golang
package kcp
import (
"github.com/v2ray/v2ray-core/common/alloc"
v2io "github.com/v2ray/v2ray-core/common/io"
"github.com/v2ray/v2ray-core/common/log"
)
const (
IKCP_RTO_NDL = 30 // no delay min rto
IKCP_RTO_MIN = 100 // normal min rto
IKCP_RTO_DEF = 200
IKCP_RTO_MAX = 60000
IKCP_CMD_PUSH = 81 // cmd: push data
IKCP_CMD_ACK = 82 // cmd: ack
IKCP_WND_SND = 32
IKCP_WND_RCV = 32
IKCP_MTU_DEF = 1350
IKCP_ACK_FAST = 3
IKCP_INTERVAL = 100
IKCP_OVERHEAD = 24
IKCP_DEADLINK = 20
IKCP_THRESH_INIT = 2
IKCP_THRESH_MIN = 2
IKCP_PROBE_INIT = 7000 // 7 secs to probe window size
IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
)
func _imin_(a, b uint32) uint32 {
if a <= b {
return a
} else {
return b
}
}
func _imax_(a, b uint32) uint32 {
if a >= b {
return a
} else {
return b
}
}
func _itimediff(later, earlier uint32) int32 {
return (int32)(later - earlier)
}
type State int
const (
StateActive State = 0
StateReadyToClose State = 1
StatePeerClosed State = 2
StateTerminating State = 3
StateTerminated State = 4
)
// KCP defines a single KCP connection
type KCP struct {
conv uint16
state State
stateBeginTime uint32
lastIncomingTime uint32
lastPayloadTime uint32
sendingUpdated bool
receivingUpdated bool
lastPingTime uint32
mtu, mss uint32
snd_una, snd_nxt, rcv_nxt uint32
ts_recent, ts_lastack, ssthresh uint32
rx_rttvar, rx_srtt, rx_rto uint32
snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
current, interval, ts_flush, xmit uint32
updated bool
ts_probe, probe_wait uint32
dead_link, incr uint32
snd_queue *SendingQueue
rcv_queue []*DataSegment
snd_buf []*DataSegment
rcv_buf *ReceivingWindow
acklist *ACKList
fastresend int32
congestionControl bool
output *SegmentWriter
}
// NewKCP create a new kcp control object, 'conv' must equal in two endpoint
// from the same connection.
func NewKCP(conv uint16, mtu uint32, sendingWindowSize uint32, receivingWindowSize uint32, sendingQueueSize uint32, output v2io.Writer) *KCP {
log.Debug("KCP|Core: creating KCP ", conv)
kcp := new(KCP)
kcp.conv = conv
kcp.snd_wnd = sendingWindowSize
kcp.rcv_wnd = receivingWindowSize
kcp.rmt_wnd = IKCP_WND_RCV
kcp.mtu = mtu
kcp.mss = kcp.mtu - DataSegmentOverhead
kcp.rx_rto = IKCP_RTO_DEF
kcp.interval = IKCP_INTERVAL
kcp.ts_flush = IKCP_INTERVAL
kcp.ssthresh = IKCP_THRESH_INIT
kcp.dead_link = IKCP_DEADLINK
kcp.output = NewSegmentWriter(mtu, output)
kcp.rcv_buf = NewReceivingWindow(receivingWindowSize)
kcp.snd_queue = NewSendingQueue(sendingQueueSize)
kcp.acklist = new(ACKList)
kcp.cwnd = kcp.snd_wnd
return kcp
}
func (kcp *KCP) HandleOption(opt SegmentOption) {
if (opt & SegmentOptionClose) == SegmentOptionClose {
kcp.OnPeerClosed()
}
}
func (kcp *KCP) OnPeerClosed() {
if kcp.state == StateReadyToClose {
kcp.state = StateTerminating
kcp.stateBeginTime = kcp.current
}
if kcp.state == StateActive {
kcp.ClearSendQueue()
kcp.state = StatePeerClosed
kcp.stateBeginTime = kcp.current
}
}
func (kcp *KCP) OnClose() {
if kcp.state == StateActive {
kcp.state = StateReadyToClose
kcp.stateBeginTime = kcp.current
}
if kcp.state == StatePeerClosed {
kcp.state = StateTerminating
kcp.stateBeginTime = kcp.current
}
}
// Recv is user/upper level recv: returns size, returns below zero for EAGAIN
func (kcp *KCP) Recv(buffer []byte) (n int) {
if len(kcp.rcv_queue) == 0 {
return -1
}
// merge fragment
count := 0
for _, seg := range kcp.rcv_queue {
dataLen := seg.Data.Len()
if dataLen > len(buffer) {
break
}
copy(buffer, seg.Data.Value)
seg.Release()
buffer = buffer[dataLen:]
n += dataLen
count++
}
kcp.rcv_queue = kcp.rcv_queue[count:]
kcp.DumpReceivingBuf()
return
}
// DumpReceivingBuf moves available data from rcv_buf -> rcv_queue
// @Private
func (kcp *KCP) DumpReceivingBuf() {
for {
seg := kcp.rcv_buf.RemoveFirst()
if seg == nil {
break
}
kcp.rcv_queue = append(kcp.rcv_queue, seg)
kcp.rcv_buf.Advance()
kcp.rcv_nxt++
kcp.receivingUpdated = true
}
}
// Send is user/upper level send, returns below zero for error
func (kcp *KCP) Send(buffer []byte) int {
nBytes := 0
for len(buffer) > 0 && !kcp.snd_queue.IsFull() {
var size int
if len(buffer) > int(kcp.mss) {
size = int(kcp.mss)
} else {
size = len(buffer)
}
seg := &DataSegment{
Data: alloc.NewSmallBuffer().Clear().Append(buffer[:size]),
}
kcp.snd_queue.Push(seg)
buffer = buffer[size:]
nBytes += size
}
return nBytes
}
// https://tools.ietf.org/html/rfc6298
func (kcp *KCP) update_ack(rtt int32) {
var rto uint32 = 0
if kcp.rx_srtt == 0 {
kcp.rx_srtt = uint32(rtt)
kcp.rx_rttvar = uint32(rtt) / 2
} else {
delta := rtt - int32(kcp.rx_srtt)
if delta < 0 {
delta = -delta
}
kcp.rx_rttvar = (3*kcp.rx_rttvar + uint32(delta)) / 4
kcp.rx_srtt = (7*kcp.rx_srtt + uint32(rtt)) / 8
if kcp.rx_srtt < kcp.interval {
kcp.rx_srtt = kcp.interval
}
}
rto = kcp.rx_srtt + _imax_(kcp.interval, 4*kcp.rx_rttvar)
if rto > IKCP_RTO_MAX {
rto = IKCP_RTO_MAX
}
kcp.rx_rto = rto * 3 / 2
}
func (kcp *KCP) shrink_buf() {
prevUna := kcp.snd_una
if len(kcp.snd_buf) > 0 {
seg := kcp.snd_buf[0]
kcp.snd_una = seg.Number
} else {
kcp.snd_una = kcp.snd_nxt
}
if kcp.snd_una != prevUna {
kcp.sendingUpdated = true
}
}
func (kcp *KCP) parse_ack(sn uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k, seg := range kcp.snd_buf {
if sn == seg.Number {
kcp.snd_buf = append(kcp.snd_buf[:k], kcp.snd_buf[k+1:]...)
seg.Release()
break
}
if _itimediff(sn, seg.Number) < 0 {
break
}
}
}
func (kcp *KCP) parse_fastack(sn uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for _, seg := range kcp.snd_buf {
if _itimediff(sn, seg.Number) < 0 {
break
} else if sn != seg.Number {
seg.ackSkipped++
}
}
}
func (kcp *KCP) HandleReceivingNext(receivingNext uint32) {
count := 0
for _, seg := range kcp.snd_buf {
if _itimediff(receivingNext, seg.Number) > 0 {
seg.Release()
count++
} else {
break
}
}
kcp.snd_buf = kcp.snd_buf[count:]
}
func (kcp *KCP) HandleSendingNext(sendingNext uint32) {
if kcp.acklist.Clear(sendingNext) {
kcp.receivingUpdated = true
}
}
func (kcp *KCP) parse_data(newseg *DataSegment) {
sn := newseg.Number
if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||
_itimediff(sn, kcp.rcv_nxt) < 0 {
return
}
idx := sn - kcp.rcv_nxt
if !kcp.rcv_buf.Set(idx, newseg) {
newseg.Release()
}
kcp.DumpReceivingBuf()
}
// Input when you received a low level packet (eg. UDP packet), call it
func (kcp *KCP) Input(data []byte) int {
kcp.lastIncomingTime = kcp.current
var seg ISegment
var maxack uint32
var flag int
for {
seg, data = ReadSegment(data)
if seg == nil {
break
}
switch seg := seg.(type) {
case *DataSegment:
kcp.HandleOption(seg.Opt)
kcp.HandleSendingNext(seg.SendingNext)
kcp.acklist.Add(seg.Number, seg.Timestamp)
kcp.receivingUpdated = true
kcp.parse_data(seg)
kcp.lastPayloadTime = kcp.current
case *ACKSegment:
kcp.HandleOption(seg.Opt)
if kcp.rmt_wnd < seg.ReceivingWindow {
kcp.rmt_wnd = seg.ReceivingWindow
}
kcp.HandleReceivingNext(seg.ReceivingNext)
for i := 0; i < int(seg.Count); i++ {
ts := seg.TimestampList[i]
sn := seg.NumberList[i]
if _itimediff(kcp.current, ts) >= 0 {
kcp.update_ack(_itimediff(kcp.current, ts))
}
kcp.parse_ack(sn)
if flag == 0 {
flag = 1
maxack = sn
} else if _itimediff(sn, maxack) > 0 {
maxack = sn
}
}
kcp.lastPayloadTime = kcp.current
case *CmdOnlySegment:
kcp.HandleOption(seg.Opt)
if seg.Cmd == SegmentCommandTerminated {
if kcp.state == StateActive ||
kcp.state == StateReadyToClose ||
kcp.state == StatePeerClosed {
kcp.state = StateTerminating
kcp.stateBeginTime = kcp.current
} else if kcp.state == StateTerminating {
kcp.state = StateTerminated
kcp.stateBeginTime = kcp.current
}
}
kcp.HandleReceivingNext(seg.ReceivinNext)
kcp.HandleSendingNext(seg.SendingNext)
default:
}
kcp.shrink_buf()
}
if flag != 0 {
kcp.parse_fastack(maxack)
}
return 0
}
// flush pending data
func (kcp *KCP) flush() {
if kcp.state == StateTerminated {
return
}
if kcp.state == StateActive && _itimediff(kcp.current, kcp.lastPayloadTime) >= 30000 {
kcp.OnClose()
}
if kcp.state == StateTerminating {
kcp.output.Write(&CmdOnlySegment{
Conv: kcp.conv,
Cmd: SegmentCommandTerminated,
})
kcp.output.Flush()
if _itimediff(kcp.current, kcp.stateBeginTime) > 8000 {
kcp.state = StateTerminated
kcp.stateBeginTime = kcp.current
}
return
}
if kcp.state == StateReadyToClose && _itimediff(kcp.current, kcp.stateBeginTime) > 15000 {
kcp.state = StateTerminating
kcp.stateBeginTime = kcp.current
}
current := kcp.current
lost := false
// flush acknowledges
//if kcp.receivingUpdated {
ackSeg := kcp.acklist.AsSegment()
if ackSeg != nil {
ackSeg.Conv = kcp.conv
ackSeg.ReceivingWindow = uint32(kcp.rcv_nxt + kcp.rcv_wnd)
ackSeg.ReceivingNext = kcp.rcv_nxt
kcp.output.Write(ackSeg)
kcp.receivingUpdated = false
}
//}
// calculate window size
cwnd := _imin_(kcp.snd_una+kcp.snd_wnd, kcp.rmt_wnd)
if kcp.congestionControl && cwnd < kcp.snd_una+kcp.cwnd {
cwnd = kcp.snd_una + kcp.cwnd
}
for !kcp.snd_queue.IsEmpty() && _itimediff(kcp.snd_nxt, cwnd) < 0 {
seg := kcp.snd_queue.Pop()
seg.Conv = kcp.conv
seg.Number = kcp.snd_nxt
seg.timeout = current
seg.ackSkipped = 0
seg.transmit = 0
kcp.snd_buf = append(kcp.snd_buf, seg)
kcp.snd_nxt++
}
// calculate resent
resent := uint32(kcp.fastresend)
if kcp.fastresend <= 0 {
resent = 0xffffffff
}
// flush data segments
for _, segment := range kcp.snd_buf {
needsend := false
if segment.transmit == 0 {
needsend = true
segment.transmit++
segment.timeout = current + kcp.rx_rto
} else if _itimediff(current, segment.timeout) >= 0 {
needsend = true
segment.transmit++
kcp.xmit++
segment.timeout = current + kcp.rx_rto
lost = true
} else if segment.ackSkipped >= resent {
needsend = true
segment.transmit++
segment.ackSkipped = 0
segment.timeout = current + kcp.rx_rto
lost = true
}
if needsend {
segment.Timestamp = current
segment.SendingNext = kcp.snd_una
segment.Opt = 0
if kcp.state == StateReadyToClose {
segment.Opt = SegmentOptionClose
}
kcp.output.Write(segment)
kcp.sendingUpdated = false
if segment.transmit >= kcp.dead_link {
kcp.state = 0xFFFFFFFF
}
}
}
if kcp.sendingUpdated || kcp.receivingUpdated || _itimediff(kcp.current, kcp.lastPingTime) >= 5000 {
seg := &CmdOnlySegment{
Conv: kcp.conv,
Cmd: SegmentCommandPing,
ReceivinNext: kcp.rcv_nxt,
SendingNext: kcp.snd_una,
}
if kcp.state == StateReadyToClose {
seg.Opt = SegmentOptionClose
}
kcp.output.Write(seg)
kcp.lastPingTime = kcp.current
kcp.sendingUpdated = false
kcp.receivingUpdated = false
}
// flash remain segments
kcp.output.Flush()
if kcp.congestionControl {
if lost {
kcp.cwnd = 3 * kcp.cwnd / 4
} else {
kcp.cwnd += kcp.cwnd / 4
}
if kcp.cwnd < 4 {
kcp.cwnd = 4
}
if kcp.cwnd > kcp.snd_wnd {
kcp.cwnd = kcp.snd_wnd
}
}
}
// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
// ikcp_check when to call it again (without ikcp_input/_send calling).
// 'current' - current timestamp in millisec.
func (kcp *KCP) Update(current uint32) {
var slap int32
kcp.current = current
if !kcp.updated {
kcp.updated = true
kcp.ts_flush = kcp.current
}
slap = _itimediff(kcp.current, kcp.ts_flush)
if slap >= 10000 || slap < -10000 {
kcp.ts_flush = kcp.current
slap = 0
}
if slap >= 0 {
kcp.ts_flush += kcp.interval
if _itimediff(kcp.current, kcp.ts_flush) >= 0 {
kcp.ts_flush = kcp.current + kcp.interval
}
kcp.flush()
}
}
// NoDelay options
// fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)
// nodelay: 0:disable(default), 1:enable
// interval: internal update timer interval in millisec, default is 100ms
// resend: 0:disable fast resend(default), 1:enable fast resend
// nc: 0:normal congestion control(default), 1:disable congestion control
func (kcp *KCP) NoDelay(interval uint32, resend int, congestionControl bool) int {
kcp.interval = interval
if resend >= 0 {
kcp.fastresend = int32(resend)
}
kcp.congestionControl = congestionControl
return 0
}
// WaitSnd gets how many packet is waiting to be sent
func (kcp *KCP) WaitSnd() uint32 {
return uint32(len(kcp.snd_buf)) + kcp.snd_queue.Len()
}
func (this *KCP) ClearSendQueue() {
this.snd_queue.Clear()
for _, seg := range this.snd_buf {
seg.Release()
}
this.snd_buf = nil
}