1
0
mirror of https://github.com/v2fly/v2ray-core.git synced 2024-11-07 10:47:48 -05:00
v2fly/external/github.com/lucas-clemente/quic-go/internal/congestion/cubic_sender.go
2019-01-17 15:33:18 +01:00

319 lines
10 KiB
Go

package congestion
import (
"time"
"v2ray.com/core/external/github.com/lucas-clemente/quic-go/internal/protocol"
"v2ray.com/core/external/github.com/lucas-clemente/quic-go/internal/utils"
)
const (
maxBurstBytes = 3 * protocol.DefaultTCPMSS
renoBeta float32 = 0.7 // Reno backoff factor.
defaultMinimumCongestionWindow protocol.ByteCount = 2 * protocol.DefaultTCPMSS
)
type cubicSender struct {
hybridSlowStart HybridSlowStart
prr PrrSender
rttStats *RTTStats
stats connectionStats
cubic *Cubic
reno bool
// Track the largest packet that has been sent.
largestSentPacketNumber protocol.PacketNumber
// Track the largest packet that has been acked.
largestAckedPacketNumber protocol.PacketNumber
// Track the largest packet number outstanding when a CWND cutback occurs.
largestSentAtLastCutback protocol.PacketNumber
// Whether the last loss event caused us to exit slowstart.
// Used for stats collection of slowstartPacketsLost
lastCutbackExitedSlowstart bool
// When true, exit slow start with large cutback of congestion window.
slowStartLargeReduction bool
// Congestion window in packets.
congestionWindow protocol.ByteCount
// Minimum congestion window in packets.
minCongestionWindow protocol.ByteCount
// Maximum congestion window.
maxCongestionWindow protocol.ByteCount
// Slow start congestion window in bytes, aka ssthresh.
slowstartThreshold protocol.ByteCount
// Number of connections to simulate.
numConnections int
// ACK counter for the Reno implementation.
numAckedPackets uint64
initialCongestionWindow protocol.ByteCount
initialMaxCongestionWindow protocol.ByteCount
minSlowStartExitWindow protocol.ByteCount
}
var _ SendAlgorithm = &cubicSender{}
var _ SendAlgorithmWithDebugInfo = &cubicSender{}
// NewCubicSender makes a new cubic sender
func NewCubicSender(clock Clock, rttStats *RTTStats, reno bool, initialCongestionWindow, initialMaxCongestionWindow protocol.ByteCount) SendAlgorithmWithDebugInfo {
return &cubicSender{
rttStats: rttStats,
initialCongestionWindow: initialCongestionWindow,
initialMaxCongestionWindow: initialMaxCongestionWindow,
congestionWindow: initialCongestionWindow,
minCongestionWindow: defaultMinimumCongestionWindow,
slowstartThreshold: initialMaxCongestionWindow,
maxCongestionWindow: initialMaxCongestionWindow,
numConnections: defaultNumConnections,
cubic: NewCubic(clock),
reno: reno,
}
}
// TimeUntilSend returns when the next packet should be sent.
func (c *cubicSender) TimeUntilSend(bytesInFlight protocol.ByteCount) time.Duration {
if c.InRecovery() {
// PRR is used when in recovery.
if c.prr.CanSend(c.GetCongestionWindow(), bytesInFlight, c.GetSlowStartThreshold()) {
return 0
}
}
delay := c.rttStats.SmoothedRTT() / time.Duration(2*c.GetCongestionWindow())
if !c.InSlowStart() { // adjust delay, such that it's 1.25*cwd/rtt
delay = delay * 8 / 5
}
return delay
}
func (c *cubicSender) OnPacketSent(
sentTime time.Time,
bytesInFlight protocol.ByteCount,
packetNumber protocol.PacketNumber,
bytes protocol.ByteCount,
isRetransmittable bool,
) {
if !isRetransmittable {
return
}
if c.InRecovery() {
// PRR is used when in recovery.
c.prr.OnPacketSent(bytes)
}
c.largestSentPacketNumber = packetNumber
c.hybridSlowStart.OnPacketSent(packetNumber)
}
func (c *cubicSender) InRecovery() bool {
return c.largestAckedPacketNumber <= c.largestSentAtLastCutback && c.largestAckedPacketNumber != 0
}
func (c *cubicSender) InSlowStart() bool {
return c.GetCongestionWindow() < c.GetSlowStartThreshold()
}
func (c *cubicSender) GetCongestionWindow() protocol.ByteCount {
return c.congestionWindow
}
func (c *cubicSender) GetSlowStartThreshold() protocol.ByteCount {
return c.slowstartThreshold
}
func (c *cubicSender) ExitSlowstart() {
c.slowstartThreshold = c.congestionWindow
}
func (c *cubicSender) SlowstartThreshold() protocol.ByteCount {
return c.slowstartThreshold
}
func (c *cubicSender) MaybeExitSlowStart() {
if c.InSlowStart() && c.hybridSlowStart.ShouldExitSlowStart(c.rttStats.LatestRTT(), c.rttStats.MinRTT(), c.GetCongestionWindow()/protocol.DefaultTCPMSS) {
c.ExitSlowstart()
}
}
func (c *cubicSender) OnPacketAcked(
ackedPacketNumber protocol.PacketNumber,
ackedBytes protocol.ByteCount,
priorInFlight protocol.ByteCount,
eventTime time.Time,
) {
c.largestAckedPacketNumber = utils.MaxPacketNumber(ackedPacketNumber, c.largestAckedPacketNumber)
if c.InRecovery() {
// PRR is used when in recovery.
c.prr.OnPacketAcked(ackedBytes)
return
}
c.maybeIncreaseCwnd(ackedPacketNumber, ackedBytes, priorInFlight, eventTime)
if c.InSlowStart() {
c.hybridSlowStart.OnPacketAcked(ackedPacketNumber)
}
}
func (c *cubicSender) OnPacketLost(
packetNumber protocol.PacketNumber,
lostBytes protocol.ByteCount,
priorInFlight protocol.ByteCount,
) {
// TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
// already sent should be treated as a single loss event, since it's expected.
if packetNumber <= c.largestSentAtLastCutback {
if c.lastCutbackExitedSlowstart {
c.stats.slowstartPacketsLost++
c.stats.slowstartBytesLost += lostBytes
if c.slowStartLargeReduction {
// Reduce congestion window by lost_bytes for every loss.
c.congestionWindow = utils.MaxByteCount(c.congestionWindow-lostBytes, c.minSlowStartExitWindow)
c.slowstartThreshold = c.congestionWindow
}
}
return
}
c.lastCutbackExitedSlowstart = c.InSlowStart()
if c.InSlowStart() {
c.stats.slowstartPacketsLost++
}
c.prr.OnPacketLost(priorInFlight)
// TODO(chromium): Separate out all of slow start into a separate class.
if c.slowStartLargeReduction && c.InSlowStart() {
if c.congestionWindow >= 2*c.initialCongestionWindow {
c.minSlowStartExitWindow = c.congestionWindow / 2
}
c.congestionWindow -= protocol.DefaultTCPMSS
} else if c.reno {
c.congestionWindow = protocol.ByteCount(float32(c.congestionWindow) * c.RenoBeta())
} else {
c.congestionWindow = c.cubic.CongestionWindowAfterPacketLoss(c.congestionWindow)
}
if c.congestionWindow < c.minCongestionWindow {
c.congestionWindow = c.minCongestionWindow
}
c.slowstartThreshold = c.congestionWindow
c.largestSentAtLastCutback = c.largestSentPacketNumber
// reset packet count from congestion avoidance mode. We start
// counting again when we're out of recovery.
c.numAckedPackets = 0
}
func (c *cubicSender) RenoBeta() float32 {
// kNConnectionBeta is the backoff factor after loss for our N-connection
// emulation, which emulates the effective backoff of an ensemble of N
// TCP-Reno connections on a single loss event. The effective multiplier is
// computed as:
return (float32(c.numConnections) - 1. + renoBeta) / float32(c.numConnections)
}
// Called when we receive an ack. Normal TCP tracks how many packets one ack
// represents, but quic has a separate ack for each packet.
func (c *cubicSender) maybeIncreaseCwnd(
ackedPacketNumber protocol.PacketNumber,
ackedBytes protocol.ByteCount,
priorInFlight protocol.ByteCount,
eventTime time.Time,
) {
// Do not increase the congestion window unless the sender is close to using
// the current window.
if !c.isCwndLimited(priorInFlight) {
c.cubic.OnApplicationLimited()
return
}
if c.congestionWindow >= c.maxCongestionWindow {
return
}
if c.InSlowStart() {
// TCP slow start, exponential growth, increase by one for each ACK.
c.congestionWindow += protocol.DefaultTCPMSS
return
}
// Congestion avoidance
if c.reno {
// Classic Reno congestion avoidance.
c.numAckedPackets++
// Divide by num_connections to smoothly increase the CWND at a faster
// rate than conventional Reno.
if c.numAckedPackets*uint64(c.numConnections) >= uint64(c.congestionWindow)/uint64(protocol.DefaultTCPMSS) {
c.congestionWindow += protocol.DefaultTCPMSS
c.numAckedPackets = 0
}
} else {
c.congestionWindow = utils.MinByteCount(c.maxCongestionWindow, c.cubic.CongestionWindowAfterAck(ackedBytes, c.congestionWindow, c.rttStats.MinRTT(), eventTime))
}
}
func (c *cubicSender) isCwndLimited(bytesInFlight protocol.ByteCount) bool {
congestionWindow := c.GetCongestionWindow()
if bytesInFlight >= congestionWindow {
return true
}
availableBytes := congestionWindow - bytesInFlight
slowStartLimited := c.InSlowStart() && bytesInFlight > congestionWindow/2
return slowStartLimited || availableBytes <= maxBurstBytes
}
// BandwidthEstimate returns the current bandwidth estimate
func (c *cubicSender) BandwidthEstimate() Bandwidth {
srtt := c.rttStats.SmoothedRTT()
if srtt == 0 {
// If we haven't measured an rtt, the bandwidth estimate is unknown.
return 0
}
return BandwidthFromDelta(c.GetCongestionWindow(), srtt)
}
// HybridSlowStart returns the hybrid slow start instance for testing
func (c *cubicSender) HybridSlowStart() *HybridSlowStart {
return &c.hybridSlowStart
}
// SetNumEmulatedConnections sets the number of emulated connections
func (c *cubicSender) SetNumEmulatedConnections(n int) {
c.numConnections = utils.Max(n, 1)
c.cubic.SetNumConnections(c.numConnections)
}
// OnRetransmissionTimeout is called on an retransmission timeout
func (c *cubicSender) OnRetransmissionTimeout(packetsRetransmitted bool) {
c.largestSentAtLastCutback = 0
if !packetsRetransmitted {
return
}
c.hybridSlowStart.Restart()
c.cubic.Reset()
c.slowstartThreshold = c.congestionWindow / 2
c.congestionWindow = c.minCongestionWindow
}
// OnConnectionMigration is called when the connection is migrated (?)
func (c *cubicSender) OnConnectionMigration() {
c.hybridSlowStart.Restart()
c.prr = PrrSender{}
c.largestSentPacketNumber = 0
c.largestAckedPacketNumber = 0
c.largestSentAtLastCutback = 0
c.lastCutbackExitedSlowstart = false
c.cubic.Reset()
c.numAckedPackets = 0
c.congestionWindow = c.initialCongestionWindow
c.slowstartThreshold = c.initialMaxCongestionWindow
c.maxCongestionWindow = c.initialMaxCongestionWindow
}
// SetSlowStartLargeReduction allows enabling the SSLR experiment
func (c *cubicSender) SetSlowStartLargeReduction(enabled bool) {
c.slowStartLargeReduction = enabled
}