mirror of
https://github.com/v2fly/v2ray-core.git
synced 2025-02-20 23:47:21 -05:00
183 lines
4.5 KiB
Go
183 lines
4.5 KiB
Go
// modified from github.com/oleiade/lane
|
|
|
|
package pq
|
|
|
|
import (
|
|
"golang.org/x/exp/constraints"
|
|
)
|
|
|
|
// PriorityQueue is a heap-based priority-queue data structure implementation.
|
|
//
|
|
// It can either be min (ascending) or max (descending)
|
|
// oriented/ordered. Its type parameters `T` and `P`, respectively
|
|
// specify the underlying value type and the underlying priority type.
|
|
type PriorityQueue[T any, P constraints.Ordered] struct {
|
|
items []*priorityQueueItem[T, P]
|
|
itemCount uint
|
|
comparator func(lhs, rhs P) bool
|
|
}
|
|
|
|
// NewPriorityQueue instantiates a new PriorityQueue with the provided comparison heuristic.
|
|
// The package defines the `Max` and `Min` heuristic to define a max-oriented or
|
|
// min-oriented heuristics, respectively.
|
|
func NewPriorityQueue[T any, P constraints.Ordered](heuristic func(lhs, rhs P) bool) *PriorityQueue[T, P] {
|
|
items := make([]*priorityQueueItem[T, P], 1)
|
|
items[0] = nil
|
|
|
|
return &PriorityQueue[T, P]{
|
|
items: items,
|
|
itemCount: 0,
|
|
comparator: heuristic,
|
|
}
|
|
}
|
|
|
|
// NewMaxPriorityQueue instantiates a new maximum oriented PriorityQueue.
|
|
func NewMaxPriorityQueue[T any, P constraints.Ordered]() *PriorityQueue[T, P] {
|
|
return NewPriorityQueue[T](Maximum[P])
|
|
}
|
|
|
|
// NewMinPriorityQueue instantiates a new minimum oriented PriorityQueue.
|
|
func NewMinPriorityQueue[T any, P constraints.Ordered]() *PriorityQueue[T, P] {
|
|
return NewPriorityQueue[T](Minimum[P])
|
|
}
|
|
|
|
// Maximum returns whether `rhs` is greater than `lhs`.
|
|
//
|
|
// Use it as a comparison heuristic during a PriorityQueue's
|
|
// instantiation.
|
|
func Maximum[T constraints.Ordered](lhs, rhs T) bool {
|
|
return lhs < rhs
|
|
}
|
|
|
|
// Minimum returns whether `rhs` is less than `lhs`.
|
|
//
|
|
// Use it as a comparison heuristic during a PriorityQueue's
|
|
// instantiation.
|
|
func Minimum[T constraints.Ordered](lhs, rhs T) bool {
|
|
return lhs > rhs
|
|
}
|
|
|
|
// Push inserts the value in the PriorityQueue with the provided priority
|
|
// in at most *O(log n)* time complexity.
|
|
func (pq *PriorityQueue[T, P]) Push(value T, priority P) {
|
|
item := newPriorityQueueItem(value, priority)
|
|
|
|
pq.items = append(pq.items, item)
|
|
pq.itemCount++
|
|
pq.swim(pq.size())
|
|
}
|
|
|
|
// Pop and return the highest or lowest priority item (depending on the
|
|
// comparison heuristic of your PriorityQueue) from the PriorityQueue in
|
|
// at most *O(log n)* complexity.
|
|
func (pq *PriorityQueue[T, P]) Pop() (value T, priority P, ok bool) {
|
|
|
|
if pq.size() < 1 {
|
|
ok = false
|
|
return
|
|
}
|
|
|
|
max := pq.items[1]
|
|
pq.exch(1, pq.size())
|
|
pq.items = pq.items[0:pq.size()]
|
|
pq.itemCount--
|
|
pq.sink(1)
|
|
|
|
value = max.value
|
|
priority = max.priority
|
|
ok = true
|
|
|
|
return
|
|
}
|
|
|
|
// Head returns the highest or lowest priority item (depending on
|
|
// the comparison heuristic of your PriorityQueue) from the PriorityQueue
|
|
// in *O(1)* complexity.
|
|
func (pq *PriorityQueue[T, P]) Head() (value T, priority P, ok bool) {
|
|
|
|
if pq.size() < 1 {
|
|
ok = false
|
|
return
|
|
}
|
|
|
|
value = pq.items[1].value
|
|
priority = pq.items[1].priority
|
|
ok = true
|
|
|
|
return
|
|
}
|
|
|
|
// Size returns the number of elements present in the PriorityQueue.
|
|
func (pq *PriorityQueue[T, P]) Size() uint {
|
|
|
|
return pq.size()
|
|
}
|
|
|
|
// Empty returns whether the PriorityQueue is empty.
|
|
func (pq *PriorityQueue[T, P]) Empty() bool {
|
|
|
|
return pq.size() == 0
|
|
}
|
|
|
|
// Clone returns a copy of the PriorityQueue.
|
|
func (pq *PriorityQueue[T, P]) Clone() *PriorityQueue[T, P] {
|
|
items := make([]*priorityQueueItem[T, P], len(pq.items))
|
|
copy(items, pq.items)
|
|
|
|
return &PriorityQueue[T, P]{
|
|
items: items,
|
|
itemCount: pq.itemCount,
|
|
comparator: pq.comparator,
|
|
}
|
|
}
|
|
|
|
func (pq *PriorityQueue[T, P]) swim(k uint) {
|
|
for k > 1 && pq.less(k/2, k) {
|
|
pq.exch(k/2, k)
|
|
k /= 2
|
|
}
|
|
}
|
|
|
|
func (pq *PriorityQueue[T, P]) sink(k uint) {
|
|
for 2*k <= pq.size() {
|
|
j := 2 * k
|
|
|
|
if j < pq.size() && pq.less(j, j+1) {
|
|
j++
|
|
}
|
|
|
|
if !pq.less(k, j) {
|
|
break
|
|
}
|
|
|
|
pq.exch(k, j)
|
|
k = j
|
|
}
|
|
}
|
|
|
|
func (pq *PriorityQueue[T, P]) size() uint {
|
|
return pq.itemCount
|
|
}
|
|
|
|
func (pq *PriorityQueue[T, P]) less(lhs, rhs uint) bool {
|
|
return pq.comparator(pq.items[lhs].priority, pq.items[rhs].priority)
|
|
}
|
|
|
|
func (pq *PriorityQueue[T, P]) exch(lhs, rhs uint) {
|
|
pq.items[lhs], pq.items[rhs] = pq.items[rhs], pq.items[lhs]
|
|
}
|
|
|
|
// priorityQueueItem is the underlying PriorityQueue item container.
|
|
type priorityQueueItem[T any, P constraints.Ordered] struct {
|
|
value T
|
|
priority P
|
|
}
|
|
|
|
// newPriorityQueue instantiates a new priorityQueueItem.
|
|
func newPriorityQueueItem[T any, P constraints.Ordered](value T, priority P) *priorityQueueItem[T, P] {
|
|
return &priorityQueueItem[T, P]{
|
|
value: value,
|
|
priority: priority,
|
|
}
|
|
}
|