1
0
mirror of https://github.com/v2fly/v2ray-core.git synced 2024-06-03 06:30:42 +00:00

customizable kcp code

This commit is contained in:
v2ray 2016-06-14 23:25:06 +02:00
parent 71ce8f4416
commit 99516bc511
7 changed files with 1591 additions and 31 deletions

View File

@ -38,15 +38,14 @@ fast3,fast2,fast,normal
->>>>>> less bandwich wasted
*/
type Config struct {
Mode string `json:"Mode"`
Mtu int `json:"MaximumTransmissionUnit"`
Sndwnd int `json:"SendingWindowSize"`
Rcvwnd int `json:"ReceivingWindowSize"`
Fec int `json:"ForwardErrorCorrectionGroupSize"`
Acknodelay bool `json:"AcknowledgeNoDelay"`
Dscp int `json:"Dscp"`
ReadTimeout int `json:"ReadTimeout"`
WriteTimeout int `json:"WriteTimeout"`
Mode string
Mtu int
Sndwnd int
Rcvwnd int
Acknodelay bool
Dscp int
ReadTimeout int
WriteTimeout int
}
func (this *Config) Apply() {
@ -59,7 +58,6 @@ var (
Mtu: 1350,
Sndwnd: 1024,
Rcvwnd: 1024,
Fec: 4,
Dscp: 0,
ReadTimeout: 600,
WriteTimeout: 500,

View File

@ -8,20 +8,45 @@ import (
func (this *Config) UnmarshalJSON(data []byte) error {
type JSONConfig struct {
Mode string `json:"Mode"`
Mtu int `json:"MaximumTransmissionUnit"`
Sndwnd int `json:"SendingWindowSize"`
Rcvwnd int `json:"ReceivingWindowSize"`
Fec int `json:"ForwardErrorCorrectionGroupSize"`
Acknodelay bool `json:"AcknowledgeNoDelay"`
Dscp int `json:"Dscp"`
ReadTimeout int `json:"ReadTimeout"`
WriteTimeout int `json:"WriteTimeout"`
Mode *string `json:"Mode"`
Mtu *int `json:"MaximumTransmissionUnit"`
Sndwnd *int `json:"SendingWindowSize"`
Rcvwnd *int `json:"ReceivingWindowSize"`
Acknodelay *bool `json:"AcknowledgeNoDelay"`
Dscp *int `json:"Dscp"`
ReadTimeout *int `json:"ReadTimeout"`
WriteTimeout *int `json:"WriteTimeout"`
}
jsonConfig := effectiveConfig
jsonConfig := new(JSONConfig)
if err := json.Unmarshal(data, &jsonConfig); err != nil {
return err
}
*this = jsonConfig
if jsonConfig.Mode != nil {
this.Mode = *jsonConfig.Mode
}
if jsonConfig.Mtu != nil {
this.Mtu = *jsonConfig.Mtu
}
if jsonConfig.Sndwnd != nil {
this.Sndwnd = *jsonConfig.Sndwnd
}
if jsonConfig.Rcvwnd != nil {
this.Rcvwnd = *jsonConfig.Rcvwnd
}
if jsonConfig.Acknodelay != nil {
this.Acknodelay = *jsonConfig.Acknodelay
}
if jsonConfig.Dscp != nil {
this.Dscp = *jsonConfig.Dscp
}
if jsonConfig.ReadTimeout != nil {
this.ReadTimeout = *jsonConfig.ReadTimeout
}
if jsonConfig.WriteTimeout != nil {
this.WriteTimeout = *jsonConfig.WriteTimeout
}
return nil
}

View File

@ -0,0 +1,23 @@
package kcp
type BlockCrypt interface {
// Encrypt encrypts the whole block in src into dst.
// Dst and src may point at the same memory.
Encrypt(dst, src []byte)
// Decrypt decrypts the whole block in src into dst.
// Dst and src may point at the same memory.
Decrypt(dst, src []byte)
}
// None Encryption
type NoneBlockCrypt struct {
xortbl []byte
}
func NewNoneBlockCrypt(key []byte) (BlockCrypt, error) {
return new(NoneBlockCrypt), nil
}
func (c *NoneBlockCrypt) Encrypt(dst, src []byte) {}
func (c *NoneBlockCrypt) Decrypt(dst, src []byte) {}

View File

@ -3,13 +3,11 @@ package kcp
import (
v2net "github.com/v2ray/v2ray-core/common/net"
"github.com/v2ray/v2ray-core/transport/internet"
"github.com/xtaci/kcp-go"
)
func DialKCP(src v2net.Address, dest v2net.Destination) (internet.Connection, error) {
cpip, _ := kcp.NewNoneBlockCrypt(nil)
kcv, err := kcp.DialWithOptions(effectiveConfig.Fec, dest.NetAddr(), cpip)
cpip, _ := NewNoneBlockCrypt(nil)
kcv, err := DialWithOptions(dest.NetAddr(), cpip)
if err != nil {
return nil, err
}

View File

@ -0,0 +1,901 @@
// Package kcp - A Fast and Reliable ARQ Protocol
//
// Acknowledgement:
// skywind3000@github for inventing the KCP protocol
// xtaci@github for translating to Golang
package kcp
import (
"encoding/binary"
)
const (
IKCP_RTO_NDL = 30 // no delay min rto
IKCP_RTO_MIN = 100 // normal min rto
IKCP_RTO_DEF = 200
IKCP_RTO_MAX = 60000
IKCP_CMD_PUSH = 81 // cmd: push data
IKCP_CMD_ACK = 82 // cmd: ack
IKCP_CMD_WASK = 83 // cmd: window probe (ask)
IKCP_CMD_WINS = 84 // cmd: window size (tell)
IKCP_ASK_SEND = 1 // need to send IKCP_CMD_WASK
IKCP_ASK_TELL = 2 // need to send IKCP_CMD_WINS
IKCP_WND_SND = 32
IKCP_WND_RCV = 32
IKCP_MTU_DEF = 1400
IKCP_ACK_FAST = 3
IKCP_INTERVAL = 100
IKCP_OVERHEAD = 24
IKCP_DEADLINK = 20
IKCP_THRESH_INIT = 2
IKCP_THRESH_MIN = 2
IKCP_PROBE_INIT = 7000 // 7 secs to probe window size
IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
)
// Output is a closure which captures conn and calls conn.Write
type Output func(buf []byte, size int)
/* encode 8 bits unsigned int */
func ikcp_encode8u(p []byte, c byte) []byte {
p[0] = c
return p[1:]
}
/* decode 8 bits unsigned int */
func ikcp_decode8u(p []byte, c *byte) []byte {
*c = p[0]
return p[1:]
}
/* encode 16 bits unsigned int (lsb) */
func ikcp_encode16u(p []byte, w uint16) []byte {
binary.LittleEndian.PutUint16(p, w)
return p[2:]
}
/* decode 16 bits unsigned int (lsb) */
func ikcp_decode16u(p []byte, w *uint16) []byte {
*w = binary.LittleEndian.Uint16(p)
return p[2:]
}
/* encode 32 bits unsigned int (lsb) */
func ikcp_encode32u(p []byte, l uint32) []byte {
binary.LittleEndian.PutUint32(p, l)
return p[4:]
}
/* decode 32 bits unsigned int (lsb) */
func ikcp_decode32u(p []byte, l *uint32) []byte {
*l = binary.LittleEndian.Uint32(p)
return p[4:]
}
func _imin_(a, b uint32) uint32 {
if a <= b {
return a
} else {
return b
}
}
func _imax_(a, b uint32) uint32 {
if a >= b {
return a
} else {
return b
}
}
func _ibound_(lower, middle, upper uint32) uint32 {
return _imin_(_imax_(lower, middle), upper)
}
func _itimediff(later, earlier uint32) int32 {
return (int32)(later - earlier)
}
// Segment defines a KCP segment
type Segment struct {
conv uint32
cmd uint32
frg uint32
wnd uint32
ts uint32
sn uint32
una uint32
resendts uint32
rto uint32
fastack uint32
xmit uint32
data []byte
}
// encode a segment into buffer
func (seg *Segment) encode(ptr []byte) []byte {
ptr = ikcp_encode32u(ptr, seg.conv)
ptr = ikcp_encode8u(ptr, uint8(seg.cmd))
ptr = ikcp_encode8u(ptr, uint8(seg.frg))
ptr = ikcp_encode16u(ptr, uint16(seg.wnd))
ptr = ikcp_encode32u(ptr, seg.ts)
ptr = ikcp_encode32u(ptr, seg.sn)
ptr = ikcp_encode32u(ptr, seg.una)
ptr = ikcp_encode32u(ptr, uint32(len(seg.data)))
return ptr
}
// NewSegment creates a KCP segment
func NewSegment(size int) *Segment {
seg := new(Segment)
seg.data = make([]byte, size)
return seg
}
// KCP defines a single KCP connection
type KCP struct {
conv, mtu, mss, state uint32
snd_una, snd_nxt, rcv_nxt uint32
ts_recent, ts_lastack, ssthresh uint32
rx_rttval, rx_srtt, rx_rto, rx_minrto uint32
snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
current, interval, ts_flush, xmit uint32
nodelay, updated uint32
ts_probe, probe_wait uint32
dead_link, incr uint32
snd_queue []Segment
rcv_queue []Segment
snd_buf []Segment
rcv_buf []Segment
acklist []uint32
buffer []byte
fastresend int32
nocwnd int32
logmask int32
output Output
}
// NewKCP create a new kcp control object, 'conv' must equal in two endpoint
// from the same connection.
func NewKCP(conv uint32, output Output) *KCP {
kcp := new(KCP)
kcp.conv = conv
kcp.snd_wnd = IKCP_WND_SND
kcp.rcv_wnd = IKCP_WND_RCV
kcp.rmt_wnd = IKCP_WND_RCV
kcp.mtu = IKCP_MTU_DEF
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.buffer = make([]byte, (kcp.mtu+IKCP_OVERHEAD)*3)
kcp.rx_rto = IKCP_RTO_DEF
kcp.rx_minrto = IKCP_RTO_MIN
kcp.interval = IKCP_INTERVAL
kcp.ts_flush = IKCP_INTERVAL
kcp.ssthresh = IKCP_THRESH_INIT
kcp.dead_link = IKCP_DEADLINK
kcp.output = output
return kcp
}
// PeekSize checks the size of next message in the recv queue
func (kcp *KCP) PeekSize() (length int) {
if len(kcp.rcv_queue) == 0 {
return -1
}
seg := &kcp.rcv_queue[0]
if seg.frg == 0 {
return len(seg.data)
}
if len(kcp.rcv_queue) < int(seg.frg+1) {
return -1
}
for k := range kcp.rcv_queue {
seg := &kcp.rcv_queue[k]
length += len(seg.data)
if seg.frg == 0 {
break
}
}
return
}
// Recv is user/upper level recv: returns size, returns below zero for EAGAIN
func (kcp *KCP) Recv(buffer []byte) (n int) {
if len(kcp.rcv_queue) == 0 {
return -1
}
peeksize := kcp.PeekSize()
if peeksize < 0 {
return -2
}
if peeksize > len(buffer) {
return -3
}
var fast_recover bool
if len(kcp.rcv_queue) >= int(kcp.rcv_wnd) {
fast_recover = true
}
// merge fragment
count := 0
for k := range kcp.rcv_queue {
seg := &kcp.rcv_queue[k]
copy(buffer, seg.data)
buffer = buffer[len(seg.data):]
n += len(seg.data)
count++
if seg.frg == 0 {
break
}
}
kcp.rcv_queue = kcp.rcv_queue[count:]
// move available data from rcv_buf -> rcv_queue
count = 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
kcp.rcv_queue = append(kcp.rcv_queue, *seg)
kcp.rcv_nxt++
count++
} else {
break
}
}
kcp.rcv_buf = kcp.rcv_buf[count:]
// fast recover
if len(kcp.rcv_queue) < int(kcp.rcv_wnd) && fast_recover {
// ready to send back IKCP_CMD_WINS in ikcp_flush
// tell remote my window size
kcp.probe |= IKCP_ASK_TELL
}
return
}
// Send is user/upper level send, returns below zero for error
func (kcp *KCP) Send(buffer []byte) int {
var count int
if len(buffer) == 0 {
return -1
}
if len(buffer) < int(kcp.mss) {
count = 1
} else {
count = (len(buffer) + int(kcp.mss) - 1) / int(kcp.mss)
}
if count > 255 {
return -2
}
if count == 0 {
count = 1
}
for i := 0; i < count; i++ {
var size int
if len(buffer) > int(kcp.mss) {
size = int(kcp.mss)
} else {
size = len(buffer)
}
seg := NewSegment(size)
copy(seg.data, buffer[:size])
seg.frg = uint32(count - i - 1)
kcp.snd_queue = append(kcp.snd_queue, *seg)
buffer = buffer[size:]
}
return 0
}
// https://tools.ietf.org/html/rfc6298
func (kcp *KCP) update_ack(rtt int32) {
var rto uint32 = 0
if kcp.rx_srtt == 0 {
kcp.rx_srtt = uint32(rtt)
kcp.rx_rttval = uint32(rtt) / 2
} else {
delta := rtt - int32(kcp.rx_srtt)
if delta < 0 {
delta = -delta
}
kcp.rx_rttval = (3*kcp.rx_rttval + uint32(delta)) / 4
kcp.rx_srtt = (7*kcp.rx_srtt + uint32(rtt)) / 8
if kcp.rx_srtt < 1 {
kcp.rx_srtt = 1
}
}
rto = kcp.rx_srtt + _imax_(1, 4*kcp.rx_rttval)
kcp.rx_rto = _ibound_(kcp.rx_minrto, rto, IKCP_RTO_MAX)
}
func (kcp *KCP) shrink_buf() {
if len(kcp.snd_buf) > 0 {
seg := &kcp.snd_buf[0]
kcp.snd_una = seg.sn
} else {
kcp.snd_una = kcp.snd_nxt
}
}
func (kcp *KCP) parse_ack(sn uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if sn == seg.sn {
kcp.snd_buf = append(kcp.snd_buf[:k], kcp.snd_buf[k+1:]...)
break
}
if _itimediff(sn, seg.sn) < 0 {
break
}
}
}
func (kcp *KCP) parse_fastack(sn uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if _itimediff(sn, seg.sn) < 0 {
break
} else if sn != seg.sn {
seg.fastack++
}
}
}
func (kcp *KCP) parse_una(una uint32) {
count := 0
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if _itimediff(una, seg.sn) > 0 {
count++
} else {
break
}
}
kcp.snd_buf = kcp.snd_buf[count:]
}
// ack append
func (kcp *KCP) ack_push(sn, ts uint32) {
kcp.acklist = append(kcp.acklist, sn, ts)
}
func (kcp *KCP) ack_get(p int) (sn, ts uint32) {
return kcp.acklist[p*2+0], kcp.acklist[p*2+1]
}
func (kcp *KCP) parse_data(newseg *Segment) {
sn := newseg.sn
if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||
_itimediff(sn, kcp.rcv_nxt) < 0 {
return
}
n := len(kcp.rcv_buf) - 1
insert_idx := 0
repeat := false
for i := n; i >= 0; i-- {
seg := &kcp.rcv_buf[i]
if seg.sn == sn {
repeat = true
break
}
if _itimediff(sn, seg.sn) > 0 {
insert_idx = i + 1
break
}
}
if !repeat {
if insert_idx == n+1 {
kcp.rcv_buf = append(kcp.rcv_buf, *newseg)
} else {
kcp.rcv_buf = append(kcp.rcv_buf, Segment{})
copy(kcp.rcv_buf[insert_idx+1:], kcp.rcv_buf[insert_idx:])
kcp.rcv_buf[insert_idx] = *newseg
}
}
// move available data from rcv_buf -> rcv_queue
count := 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[k])
kcp.rcv_nxt++
count++
} else {
break
}
}
kcp.rcv_buf = kcp.rcv_buf[count:]
}
// Input when you received a low level packet (eg. UDP packet), call it
func (kcp *KCP) Input(data []byte) int {
una := kcp.snd_una
if len(data) < IKCP_OVERHEAD {
return -1
}
var maxack uint32
var flag int
for {
var ts, sn, length, una, conv uint32
var wnd uint16
var cmd, frg uint8
if len(data) < int(IKCP_OVERHEAD) {
break
}
data = ikcp_decode32u(data, &conv)
if conv != kcp.conv {
return -1
}
data = ikcp_decode8u(data, &cmd)
data = ikcp_decode8u(data, &frg)
data = ikcp_decode16u(data, &wnd)
data = ikcp_decode32u(data, &ts)
data = ikcp_decode32u(data, &sn)
data = ikcp_decode32u(data, &una)
data = ikcp_decode32u(data, &length)
if len(data) < int(length) {
return -2
}
if cmd != IKCP_CMD_PUSH && cmd != IKCP_CMD_ACK &&
cmd != IKCP_CMD_WASK && cmd != IKCP_CMD_WINS {
return -3
}
kcp.rmt_wnd = uint32(wnd)
kcp.parse_una(una)
kcp.shrink_buf()
if cmd == IKCP_CMD_ACK {
if _itimediff(kcp.current, ts) >= 0 {
kcp.update_ack(_itimediff(kcp.current, ts))
}
kcp.parse_ack(sn)
kcp.shrink_buf()
if flag == 0 {
flag = 1
maxack = sn
} else if _itimediff(sn, maxack) > 0 {
maxack = sn
}
} else if cmd == IKCP_CMD_PUSH {
if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) < 0 {
kcp.ack_push(sn, ts)
if _itimediff(sn, kcp.rcv_nxt) >= 0 {
seg := NewSegment(int(length))
seg.conv = conv
seg.cmd = uint32(cmd)
seg.frg = uint32(frg)
seg.wnd = uint32(wnd)
seg.ts = ts
seg.sn = sn
seg.una = una
copy(seg.data, data[:length])
kcp.parse_data(seg)
}
}
} else if cmd == IKCP_CMD_WASK {
// ready to send back IKCP_CMD_WINS in Ikcp_flush
// tell remote my window size
kcp.probe |= IKCP_ASK_TELL
} else if cmd == IKCP_CMD_WINS {
// do nothing
} else {
return -3
}
data = data[length:]
}
if flag != 0 {
kcp.parse_fastack(maxack)
}
if _itimediff(kcp.snd_una, una) > 0 {
if kcp.cwnd < kcp.rmt_wnd {
mss := kcp.mss
if kcp.cwnd < kcp.ssthresh {
kcp.cwnd++
kcp.incr += mss
} else {
if kcp.incr < mss {
kcp.incr = mss
}
kcp.incr += (mss*mss)/kcp.incr + (mss / 16)
if (kcp.cwnd+1)*mss <= kcp.incr {
kcp.cwnd++
}
}
if kcp.cwnd > kcp.rmt_wnd {
kcp.cwnd = kcp.rmt_wnd
kcp.incr = kcp.rmt_wnd * mss
}
}
}
return 0
}
func (kcp *KCP) wnd_unused() int32 {
if len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
return int32(int(kcp.rcv_wnd) - len(kcp.rcv_queue))
}
return 0
}
// flush pending data
func (kcp *KCP) flush() {
current := kcp.current
buffer := kcp.buffer
change := 0
lost := false
if kcp.updated == 0 {
return
}
var seg Segment
seg.conv = kcp.conv
seg.cmd = IKCP_CMD_ACK
seg.wnd = uint32(kcp.wnd_unused())
seg.una = kcp.rcv_nxt
// flush acknowledges
count := len(kcp.acklist) / 2
ptr := buffer
for i := 0; i < count; i++ {
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
seg.sn, seg.ts = kcp.ack_get(i)
ptr = seg.encode(ptr)
}
kcp.acklist = nil
// probe window size (if remote window size equals zero)
if kcp.rmt_wnd == 0 {
if kcp.probe_wait == 0 {
kcp.probe_wait = IKCP_PROBE_INIT
kcp.ts_probe = kcp.current + kcp.probe_wait
} else {
if _itimediff(kcp.current, kcp.ts_probe) >= 0 {
if kcp.probe_wait < IKCP_PROBE_INIT {
kcp.probe_wait = IKCP_PROBE_INIT
}
kcp.probe_wait += kcp.probe_wait / 2
if kcp.probe_wait > IKCP_PROBE_LIMIT {
kcp.probe_wait = IKCP_PROBE_LIMIT
}
kcp.ts_probe = kcp.current + kcp.probe_wait
kcp.probe |= IKCP_ASK_SEND
}
}
} else {
kcp.ts_probe = 0
kcp.probe_wait = 0
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_SEND) != 0 {
seg.cmd = IKCP_CMD_WASK
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = seg.encode(ptr)
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_TELL) != 0 {
seg.cmd = IKCP_CMD_WINS
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = seg.encode(ptr)
}
kcp.probe = 0
// calculate window size
cwnd := _imin_(kcp.snd_wnd, kcp.rmt_wnd)
if kcp.nocwnd == 0 {
cwnd = _imin_(kcp.cwnd, cwnd)
}
count = 0
for k := range kcp.snd_queue {
if _itimediff(kcp.snd_nxt, kcp.snd_una+cwnd) >= 0 {
break
}
newseg := kcp.snd_queue[k]
newseg.conv = kcp.conv
newseg.cmd = IKCP_CMD_PUSH
newseg.wnd = seg.wnd
newseg.ts = current
newseg.sn = kcp.snd_nxt
newseg.una = kcp.rcv_nxt
newseg.resendts = current
newseg.rto = kcp.rx_rto
newseg.fastack = 0
newseg.xmit = 0
kcp.snd_buf = append(kcp.snd_buf, newseg)
kcp.snd_nxt++
count++
}
kcp.snd_queue = kcp.snd_queue[count:]
// calculate resent
resent := uint32(kcp.fastresend)
if kcp.fastresend <= 0 {
resent = 0xffffffff
}
rtomin := (kcp.rx_rto >> 3)
if kcp.nodelay != 0 {
rtomin = 0
}
// flush data segments
for k := range kcp.snd_buf {
segment := &kcp.snd_buf[k]
needsend := false
if segment.xmit == 0 {
needsend = true
segment.xmit++
segment.rto = kcp.rx_rto
segment.resendts = current + segment.rto + rtomin
} else if _itimediff(current, segment.resendts) >= 0 {
needsend = true
segment.xmit++
kcp.xmit++
if kcp.nodelay == 0 {
segment.rto += kcp.rx_rto
} else {
segment.rto += kcp.rx_rto / 2
}
segment.resendts = current + segment.rto
lost = true
} else if segment.fastack >= resent {
needsend = true
segment.xmit++
segment.fastack = 0
segment.resendts = current + segment.rto
change++
}
if needsend {
segment.ts = current
segment.wnd = seg.wnd
segment.una = kcp.rcv_nxt
size := len(buffer) - len(ptr)
need := IKCP_OVERHEAD + len(segment.data)
if size+need >= int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = segment.encode(ptr)
copy(ptr, segment.data)
ptr = ptr[len(segment.data):]
if segment.xmit >= kcp.dead_link {
kcp.state = 0xFFFFFFFF
}
}
}
// flash remain segments
size := len(buffer) - len(ptr)
if size > 0 {
kcp.output(buffer, size)
}
// update ssthresh
// rate halving, https://tools.ietf.org/html/rfc6937
if change != 0 {
inflight := kcp.snd_nxt - kcp.snd_una
kcp.ssthresh = inflight / 2
if kcp.ssthresh < IKCP_THRESH_MIN {
kcp.ssthresh = IKCP_THRESH_MIN
}
kcp.cwnd = kcp.ssthresh + resent
kcp.incr = kcp.cwnd * kcp.mss
}
// congestion control, https://tools.ietf.org/html/rfc5681
if lost {
kcp.ssthresh = cwnd / 2
if kcp.ssthresh < IKCP_THRESH_MIN {
kcp.ssthresh = IKCP_THRESH_MIN
}
kcp.cwnd = 1
kcp.incr = kcp.mss
}
if kcp.cwnd < 1 {
kcp.cwnd = 1
kcp.incr = kcp.mss
}
}
// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
// ikcp_check when to call it again (without ikcp_input/_send calling).
// 'current' - current timestamp in millisec.
func (kcp *KCP) Update(current uint32) {
var slap int32
kcp.current = current
if kcp.updated == 0 {
kcp.updated = 1
kcp.ts_flush = kcp.current
}
slap = _itimediff(kcp.current, kcp.ts_flush)
if slap >= 10000 || slap < -10000 {
kcp.ts_flush = kcp.current
slap = 0
}
if slap >= 0 {
kcp.ts_flush += kcp.interval
if _itimediff(kcp.current, kcp.ts_flush) >= 0 {
kcp.ts_flush = kcp.current + kcp.interval
}
kcp.flush()
}
}
// Check determines when should you invoke ikcp_update:
// returns when you should invoke ikcp_update in millisec, if there
// is no ikcp_input/_send calling. you can call ikcp_update in that
// time, instead of call update repeatly.
// Important to reduce unnacessary ikcp_update invoking. use it to
// schedule ikcp_update (eg. implementing an epoll-like mechanism,
// or optimize ikcp_update when handling massive kcp connections)
func (kcp *KCP) Check(current uint32) uint32 {
ts_flush := kcp.ts_flush
tm_flush := int32(0x7fffffff)
tm_packet := int32(0x7fffffff)
minimal := uint32(0)
if kcp.updated == 0 {
return current
}
if _itimediff(current, ts_flush) >= 10000 ||
_itimediff(current, ts_flush) < -10000 {
ts_flush = current
}
if _itimediff(current, ts_flush) >= 0 {
return current
}
tm_flush = _itimediff(ts_flush, current)
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
diff := _itimediff(seg.resendts, current)
if diff <= 0 {
return current
}
if diff < tm_packet {
tm_packet = diff
}
}
minimal = uint32(tm_packet)
if tm_packet >= tm_flush {
minimal = uint32(tm_flush)
}
if minimal >= kcp.interval {
minimal = kcp.interval
}
return current + minimal
}
// SetMtu changes MTU size, default is 1400
func (kcp *KCP) SetMtu(mtu int) int {
if mtu < 50 || mtu < IKCP_OVERHEAD {
return -1
}
buffer := make([]byte, (mtu+IKCP_OVERHEAD)*3)
if buffer == nil {
return -2
}
kcp.mtu = uint32(mtu)
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.buffer = buffer
return 0
}
func (kcp *KCP) Interval(interval int) int {
if interval > 5000 {
interval = 5000
} else if interval < 10 {
interval = 10
}
kcp.interval = uint32(interval)
return 0
}
// NoDelay options
// fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)
// nodelay: 0:disable(default), 1:enable
// interval: internal update timer interval in millisec, default is 100ms
// resend: 0:disable fast resend(default), 1:enable fast resend
// nc: 0:normal congestion control(default), 1:disable congestion control
func (kcp *KCP) NoDelay(nodelay, interval, resend, nc int) int {
if nodelay >= 0 {
kcp.nodelay = uint32(nodelay)
if nodelay != 0 {
kcp.rx_minrto = IKCP_RTO_NDL
} else {
kcp.rx_minrto = IKCP_RTO_MIN
}
}
if interval >= 0 {
if interval > 5000 {
interval = 5000
} else if interval < 10 {
interval = 10
}
kcp.interval = uint32(interval)
}
if resend >= 0 {
kcp.fastresend = int32(resend)
}
if nc >= 0 {
kcp.nocwnd = int32(nc)
}
return 0
}
// WndSize sets maximum window size: sndwnd=32, rcvwnd=32 by default
func (kcp *KCP) WndSize(sndwnd, rcvwnd int) int {
if sndwnd > 0 {
kcp.snd_wnd = uint32(sndwnd)
}
if rcvwnd > 0 {
kcp.rcv_wnd = uint32(rcvwnd)
}
return 0
}
// WaitSnd gets how many packet is waiting to be sent
func (kcp *KCP) WaitSnd() int {
return len(kcp.snd_buf) + len(kcp.snd_queue)
}

View File

@ -0,0 +1,617 @@
package kcp
import (
crand "crypto/rand"
"encoding/binary"
"errors"
"hash/crc32"
"io"
"log"
"math/rand"
"net"
"sync"
"time"
"golang.org/x/net/ipv4"
)
var (
errTimeout = errors.New("i/o timeout")
errBrokenPipe = errors.New("broken pipe")
)
const (
basePort = 20000 // minimum port for listening
maxPort = 65535 // maximum port for listening
defaultWndSize = 128 // default window size, in packet
otpSize = 16 // magic number
crcSize = 4 // 4bytes packet checksum
cryptHeaderSize = otpSize + crcSize
connTimeout = 60 * time.Second
mtuLimit = 4096
rxQueueLimit = 8192
rxFecLimit = 2048
)
type (
// UDPSession defines a KCP session implemented by UDP
UDPSession struct {
kcp *KCP // the core ARQ
conn *net.UDPConn // the underlying UDP socket
block BlockCrypt
needUpdate bool
l *Listener // point to server listener if it's a server socket
local, remote net.Addr
rd time.Time // read deadline
wd time.Time // write deadline
sockbuff []byte // kcp receiving is based on packet, I turn it into stream
die chan struct{}
isClosed bool
mu sync.Mutex
chReadEvent chan struct{}
chWriteEvent chan struct{}
chTicker chan time.Time
chUDPOutput chan []byte
headerSize int
lastInputTs time.Time
ackNoDelay bool
}
)
// newUDPSession create a new udp session for client or server
func newUDPSession(conv uint32, l *Listener, conn *net.UDPConn, remote *net.UDPAddr, block BlockCrypt) *UDPSession {
sess := new(UDPSession)
sess.chTicker = make(chan time.Time, 1)
sess.chUDPOutput = make(chan []byte, rxQueueLimit)
sess.die = make(chan struct{})
sess.local = conn.LocalAddr()
sess.chReadEvent = make(chan struct{}, 1)
sess.chWriteEvent = make(chan struct{}, 1)
sess.remote = remote
sess.conn = conn
sess.l = l
sess.block = block
sess.lastInputTs = time.Now()
// caculate header size
if sess.block != nil {
sess.headerSize += cryptHeaderSize
}
sess.kcp = NewKCP(conv, func(buf []byte, size int) {
if size >= IKCP_OVERHEAD {
ext := make([]byte, sess.headerSize+size)
copy(ext[sess.headerSize:], buf)
sess.chUDPOutput <- ext
}
})
sess.kcp.WndSize(defaultWndSize, defaultWndSize)
sess.kcp.SetMtu(IKCP_MTU_DEF - sess.headerSize)
go sess.updateTask()
go sess.outputTask()
if l == nil { // it's a client connection
go sess.readLoop()
}
return sess
}
// Read implements the Conn Read method.
func (s *UDPSession) Read(b []byte) (n int, err error) {
for {
s.mu.Lock()
if len(s.sockbuff) > 0 { // copy from buffer
n = copy(b, s.sockbuff)
s.sockbuff = s.sockbuff[n:]
s.mu.Unlock()
return n, nil
}
if s.isClosed {
s.mu.Unlock()
return 0, errBrokenPipe
}
if !s.rd.IsZero() {
if time.Now().After(s.rd) { // timeout
s.mu.Unlock()
return 0, errTimeout
}
}
if n := s.kcp.PeekSize(); n > 0 { // data arrived
if len(b) >= n {
s.kcp.Recv(b)
} else {
buf := make([]byte, n)
s.kcp.Recv(buf)
n = copy(b, buf)
s.sockbuff = buf[n:] // store remaining bytes into sockbuff for next read
}
s.mu.Unlock()
return n, nil
}
var timeout <-chan time.Time
if !s.rd.IsZero() {
delay := s.rd.Sub(time.Now())
timeout = time.After(delay)
}
s.mu.Unlock()
// wait for read event or timeout
select {
case <-s.chReadEvent:
case <-timeout:
case <-s.die:
}
}
}
// Write implements the Conn Write method.
func (s *UDPSession) Write(b []byte) (n int, err error) {
for {
s.mu.Lock()
if s.isClosed {
s.mu.Unlock()
return 0, errBrokenPipe
}
if !s.wd.IsZero() {
if time.Now().After(s.wd) { // timeout
s.mu.Unlock()
return 0, errTimeout
}
}
if s.kcp.WaitSnd() < int(s.kcp.snd_wnd) {
n = len(b)
max := s.kcp.mss << 8
for {
if len(b) <= int(max) { // in most cases
s.kcp.Send(b)
break
} else {
s.kcp.Send(b[:max])
b = b[max:]
}
}
s.kcp.current = currentMs()
s.kcp.flush()
s.mu.Unlock()
return n, nil
}
var timeout <-chan time.Time
if !s.wd.IsZero() {
delay := s.wd.Sub(time.Now())
timeout = time.After(delay)
}
s.mu.Unlock()
// wait for write event or timeout
select {
case <-s.chWriteEvent:
case <-timeout:
case <-s.die:
}
}
}
// Close closes the connection.
func (s *UDPSession) Close() error {
s.mu.Lock()
defer s.mu.Unlock()
if s.isClosed {
return errBrokenPipe
}
close(s.die)
s.isClosed = true
if s.l == nil { // client socket close
s.conn.Close()
}
return nil
}
// LocalAddr returns the local network address. The Addr returned is shared by all invocations of LocalAddr, so do not modify it.
func (s *UDPSession) LocalAddr() net.Addr {
return s.local
}
// RemoteAddr returns the remote network address. The Addr returned is shared by all invocations of RemoteAddr, so do not modify it.
func (s *UDPSession) RemoteAddr() net.Addr { return s.remote }
// SetDeadline sets the deadline associated with the listener. A zero time value disables the deadline.
func (s *UDPSession) SetDeadline(t time.Time) error {
s.mu.Lock()
defer s.mu.Unlock()
s.rd = t
s.wd = t
return nil
}
// SetReadDeadline implements the Conn SetReadDeadline method.
func (s *UDPSession) SetReadDeadline(t time.Time) error {
s.mu.Lock()
defer s.mu.Unlock()
s.rd = t
return nil
}
// SetWriteDeadline implements the Conn SetWriteDeadline method.
func (s *UDPSession) SetWriteDeadline(t time.Time) error {
s.mu.Lock()
defer s.mu.Unlock()
s.wd = t
return nil
}
// SetWindowSize set maximum window size
func (s *UDPSession) SetWindowSize(sndwnd, rcvwnd int) {
s.mu.Lock()
defer s.mu.Unlock()
s.kcp.WndSize(sndwnd, rcvwnd)
}
// SetMtu sets the maximum transmission unit
func (s *UDPSession) SetMtu(mtu int) {
s.mu.Lock()
defer s.mu.Unlock()
s.kcp.SetMtu(mtu - s.headerSize)
}
// SetACKNoDelay changes ack flush option, set true to flush ack immediately,
func (s *UDPSession) SetACKNoDelay(nodelay bool) {
s.mu.Lock()
defer s.mu.Unlock()
s.ackNoDelay = nodelay
}
// SetNoDelay calls nodelay() of kcp
func (s *UDPSession) SetNoDelay(nodelay, interval, resend, nc int) {
s.mu.Lock()
defer s.mu.Unlock()
s.kcp.NoDelay(nodelay, interval, resend, nc)
}
// SetDSCP sets the DSCP field of IP header
func (s *UDPSession) SetDSCP(tos int) {
s.mu.Lock()
defer s.mu.Unlock()
if err := ipv4.NewConn(s.conn).SetTOS(tos << 2); err != nil {
log.Println("set tos:", err)
}
}
func (s *UDPSession) outputTask() {
// ping
ticker := time.NewTicker(5 * time.Second)
defer ticker.Stop()
for {
select {
case ext := <-s.chUDPOutput:
if s.block != nil {
io.ReadFull(crand.Reader, ext[:otpSize]) // OTP
checksum := crc32.ChecksumIEEE(ext[cryptHeaderSize:])
binary.LittleEndian.PutUint32(ext[otpSize:], checksum)
s.block.Encrypt(ext, ext)
}
//if rand.Intn(100) < 80 {
n, err := s.conn.WriteTo(ext, s.remote)
if err != nil {
log.Println(err, n)
}
//}
case <-ticker.C:
sz := rand.Intn(IKCP_MTU_DEF - s.headerSize - IKCP_OVERHEAD)
sz += s.headerSize + IKCP_OVERHEAD
ping := make([]byte, sz)
io.ReadFull(crand.Reader, ping)
if s.block != nil {
checksum := crc32.ChecksumIEEE(ping[cryptHeaderSize:])
binary.LittleEndian.PutUint32(ping[otpSize:], checksum)
s.block.Encrypt(ping, ping)
}
n, err := s.conn.WriteTo(ping, s.remote)
if err != nil {
log.Println(err, n)
}
case <-s.die:
return
}
}
}
// kcp update, input loop
func (s *UDPSession) updateTask() {
var tc <-chan time.Time
if s.l == nil { // client
ticker := time.NewTicker(10 * time.Millisecond)
tc = ticker.C
defer ticker.Stop()
} else {
tc = s.chTicker
}
var nextupdate uint32
for {
select {
case <-tc:
s.mu.Lock()
current := currentMs()
if current >= nextupdate || s.needUpdate {
s.kcp.Update(current)
nextupdate = s.kcp.Check(current)
}
if s.kcp.WaitSnd() < int(s.kcp.snd_wnd) {
s.notifyWriteEvent()
}
s.needUpdate = false
s.mu.Unlock()
case <-s.die:
if s.l != nil { // has listener
s.l.chDeadlinks <- s.remote
}
return
}
}
}
// GetConv gets conversation id of a session
func (s *UDPSession) GetConv() uint32 {
return s.kcp.conv
}
func (s *UDPSession) notifyReadEvent() {
select {
case s.chReadEvent <- struct{}{}:
default:
}
}
func (s *UDPSession) notifyWriteEvent() {
select {
case s.chWriteEvent <- struct{}{}:
default:
}
}
func (s *UDPSession) kcpInput(data []byte) {
now := time.Now()
if now.Sub(s.lastInputTs) > connTimeout {
s.Close()
return
}
s.lastInputTs = now
s.mu.Lock()
s.kcp.current = currentMs()
s.kcp.Input(data)
if s.ackNoDelay {
s.kcp.current = currentMs()
s.kcp.flush()
} else {
s.needUpdate = true
}
s.mu.Unlock()
s.notifyReadEvent()
}
func (s *UDPSession) receiver(ch chan []byte) {
for {
data := make([]byte, mtuLimit)
if n, _, err := s.conn.ReadFromUDP(data); err == nil && n >= s.headerSize+IKCP_OVERHEAD {
ch <- data[:n]
} else if err != nil {
return
}
}
}
// read loop for client session
func (s *UDPSession) readLoop() {
chPacket := make(chan []byte, rxQueueLimit)
go s.receiver(chPacket)
for {
select {
case data := <-chPacket:
dataValid := false
if s.block != nil {
s.block.Decrypt(data, data)
data = data[otpSize:]
checksum := crc32.ChecksumIEEE(data[crcSize:])
if checksum == binary.LittleEndian.Uint32(data) {
data = data[crcSize:]
dataValid = true
}
} else if s.block == nil {
dataValid = true
}
if dataValid {
s.kcpInput(data)
}
case <-s.die:
return
}
}
}
type (
// Listener defines a server listening for connections
Listener struct {
block BlockCrypt
conn *net.UDPConn
sessions map[string]*UDPSession
chAccepts chan *UDPSession
chDeadlinks chan net.Addr
headerSize int
die chan struct{}
}
packet struct {
from *net.UDPAddr
data []byte
}
)
// monitor incoming data for all connections of server
func (l *Listener) monitor() {
chPacket := make(chan packet, rxQueueLimit)
go l.receiver(chPacket)
ticker := time.NewTicker(10 * time.Millisecond)
defer ticker.Stop()
for {
select {
case p := <-chPacket:
data := p.data
from := p.from
dataValid := false
if l.block != nil {
l.block.Decrypt(data, data)
data = data[otpSize:]
checksum := crc32.ChecksumIEEE(data[crcSize:])
if checksum == binary.LittleEndian.Uint32(data) {
data = data[crcSize:]
dataValid = true
}
} else if l.block == nil {
dataValid = true
}
if dataValid {
addr := from.String()
s, ok := l.sessions[addr]
if !ok { // new session
var conv uint32
convValid := false
conv = binary.LittleEndian.Uint32(data)
convValid = true
if convValid {
s := newUDPSession(conv, l, l.conn, from, l.block)
s.kcpInput(data)
l.sessions[addr] = s
l.chAccepts <- s
}
} else {
s.kcpInput(data)
}
}
case deadlink := <-l.chDeadlinks:
delete(l.sessions, deadlink.String())
case <-l.die:
return
case <-ticker.C:
now := time.Now()
for _, s := range l.sessions {
select {
case s.chTicker <- now:
default:
}
}
}
}
}
func (l *Listener) receiver(ch chan packet) {
for {
data := make([]byte, mtuLimit)
if n, from, err := l.conn.ReadFromUDP(data); err == nil && n >= l.headerSize+IKCP_OVERHEAD {
ch <- packet{from, data[:n]}
} else if err != nil {
return
}
}
}
// Accept implements the Accept method in the Listener interface; it waits for the next call and returns a generic Conn.
func (l *Listener) Accept() (*UDPSession, error) {
select {
case c := <-l.chAccepts:
return c, nil
case <-l.die:
return nil, errors.New("listener stopped")
}
}
// Close stops listening on the UDP address. Already Accepted connections are not closed.
func (l *Listener) Close() error {
if err := l.conn.Close(); err == nil {
close(l.die)
return nil
} else {
return err
}
}
// Addr returns the listener's network address, The Addr returned is shared by all invocations of Addr, so do not modify it.
func (l *Listener) Addr() net.Addr {
return l.conn.LocalAddr()
}
// Listen listens for incoming KCP packets addressed to the local address laddr on the network "udp",
func Listen(laddr string) (*Listener, error) {
return ListenWithOptions(laddr, nil)
}
// ListenWithOptions listens for incoming KCP packets addressed to the local address laddr on the network "udp" with packet encryption,
// FEC = 0 means no FEC, FEC > 0 means num(FEC) as a FEC cluster
func ListenWithOptions(laddr string, block BlockCrypt) (*Listener, error) {
udpaddr, err := net.ResolveUDPAddr("udp", laddr)
if err != nil {
return nil, err
}
conn, err := net.ListenUDP("udp", udpaddr)
if err != nil {
return nil, err
}
l := new(Listener)
l.conn = conn
l.sessions = make(map[string]*UDPSession)
l.chAccepts = make(chan *UDPSession, 1024)
l.chDeadlinks = make(chan net.Addr, 1024)
l.die = make(chan struct{})
l.block = block
// caculate header size
if l.block != nil {
l.headerSize += cryptHeaderSize
}
go l.monitor()
return l, nil
}
// Dial connects to the remote address raddr on the network "udp"
func Dial(raddr string) (*UDPSession, error) {
return DialWithOptions(raddr, nil)
}
// DialWithOptions connects to the remote address raddr on the network "udp" with packet encryption
func DialWithOptions(raddr string, block BlockCrypt) (*UDPSession, error) {
udpaddr, err := net.ResolveUDPAddr("udp", raddr)
if err != nil {
return nil, err
}
for {
port := basePort + rand.Int()%(maxPort-basePort)
if udpconn, err := net.ListenUDP("udp", &net.UDPAddr{Port: port}); err == nil {
return newUDPSession(rand.Uint32(), nil, udpconn, udpaddr, block), nil
}
}
}
func currentMs() uint32 {
return uint32(time.Now().UnixNano() / int64(time.Millisecond))
}

View File

@ -7,12 +7,10 @@ import (
v2net "github.com/v2ray/v2ray-core/common/net"
"github.com/v2ray/v2ray-core/transport/internet"
"github.com/xtaci/kcp-go"
)
type KCPVlistener struct {
lst *kcp.Listener
lst *Listener
previousSocketid map[int]uint32
previousSocketid_mapid int
}
@ -73,7 +71,7 @@ func (kvl *KCPVlistener) Addr() net.Addr {
}
type KCPVconn struct {
hc *kcp.UDPSession
hc *UDPSession
conntokeep time.Time
}
@ -168,8 +166,8 @@ func (this *KCPVconn) SetReusable(b bool) {
func ListenKCP(address v2net.Address, port v2net.Port) (internet.Listener, error) {
laddr := address.String() + ":" + port.String()
crypt, _ := kcp.NewNoneBlockCrypt(nil)
kcl, err := kcp.ListenWithOptions(effectiveConfig.Fec, laddr, crypt)
crypt, _ := NewNoneBlockCrypt(nil)
kcl, err := ListenWithOptions(laddr, crypt)
kcvl := &KCPVlistener{lst: kcl}
return kcvl, err
}