gnu: Add r-longdat.

* gnu/packages/cran.scm (r-longdat): New variable.
This commit is contained in:
Ricardo Wurmus 2023-02-18 20:32:36 +01:00
parent 1de36ea8d7
commit f3329764e2
No known key found for this signature in database
GPG Key ID: 197A5888235FACAC

View File

@ -17847,6 +17847,48 @@ hierarchic loggers, multiple handlers per logger, level based filtering, space
handling in messages and custom formatting.")
(license license:gpl3)))
(define-public r-longdat
(package
(name "r-longdat")
(version "1.1.0")
(source (origin
(method url-fetch)
(uri (cran-uri "LongDat" version))
(sha256
(base32
"1sqfmdv5agyvlw1y3yiv8kxi1040gq75qj4ln1jgb9lsmhdlfpyd"))))
(properties `((upstream-name . "LongDat")))
(build-system r-build-system)
(propagated-inputs (list r-bestnormalize
r-car
r-dplyr
r-effsize
r-emmeans
r-ggplot2
r-glmmtmb
r-lme4
r-magrittr
r-mass
r-patchwork
r-reshape2
r-rlang
r-rstatix
r-stringr
r-tibble
r-tidyr))
(native-inputs (list r-knitr))
(home-page "https://github.com/CCY-dev/LongDat")
(synopsis
"Tool for covariate-sensitive longitudinal analysis on omics data")
(description
"This tool takes longitudinal dataset as input and analyzes if there is
significant change of the features over time (a proxy for treatments), while
detects and controls for covariates simultaneously. LongDat is able to take
in several data types as input, including count, proportion, binary, ordinal
and continuous data. The output table contains p values, effect sizes and
covariates of each feature, making the downstream analysis easy.")
(license license:gpl2)))
(define-public r-longitudinal
(package
(name "r-longitudinal")