gnu: Add fit-sne.
* gnu/packages/bioinformatics.scm (fit-sne): New variable.
This commit is contained in:
parent
13b737f132
commit
0928e55266
@ -11214,6 +11214,69 @@ spliced (back-spliced) sequencing reads, indicative of circular RNA (circRNA)
|
||||
in RNA-seq data.")
|
||||
(license license:gpl3))))
|
||||
|
||||
(define-public fit-sne
|
||||
(package
|
||||
(name "fit-sne")
|
||||
(version "1.2.1")
|
||||
(source
|
||||
(origin
|
||||
(method git-fetch)
|
||||
(uri (git-reference
|
||||
(url "https://github.com/KlugerLab/FIt-SNE")
|
||||
(commit (string-append "v" version))))
|
||||
(file-name (git-file-name name version))
|
||||
(sha256
|
||||
(base32
|
||||
"1imq4577awc226wvygf94kpz156qdfw8xl0w0f7ss4w10lhmpmf5"))))
|
||||
(build-system gnu-build-system)
|
||||
(arguments
|
||||
`(#:tests? #false ; there are none
|
||||
#:phases
|
||||
;; There is no build system.
|
||||
(modify-phases %standard-phases
|
||||
(delete 'configure)
|
||||
(replace 'build
|
||||
(lambda _
|
||||
(invoke "g++" "-std=c++11" "-O3"
|
||||
"src/sptree.cpp"
|
||||
"src/tsne.cpp"
|
||||
"src/nbodyfft.cpp"
|
||||
"-o" "bin/fast_tsne"
|
||||
"-pthread" "-lfftw3" "-lm"
|
||||
"-Wno-address-of-packed-member")))
|
||||
(replace 'install
|
||||
(lambda* (#:key outputs #:allow-other-keys)
|
||||
(let* ((out (assoc-ref outputs "out"))
|
||||
(bin (string-append out "/bin"))
|
||||
(share (string-append out "/share/fit-sne")))
|
||||
(for-each (lambda (file) (install-file file bin))
|
||||
(find-files "bin"))
|
||||
|
||||
(substitute* "fast_tsne.R"
|
||||
(("^FAST_TSNE_SCRIPT_DIR.*")
|
||||
(string-append "FAST_TSNE_SCRIPT_DIR = \"" out "\"\n")))
|
||||
(install-file "fast_tsne.R" share)))))))
|
||||
(inputs
|
||||
`(("fftw" ,fftw)))
|
||||
(home-page "https://github.com/KlugerLab/FIt-SNE")
|
||||
(synopsis "Fast Fourier Transform-accelerated interpolation-based t-SNE")
|
||||
(description "@dfn{t-Stochastic Neighborhood Embedding} (t-SNE) is a
|
||||
method for dimensionality reduction and visualization of high dimensional
|
||||
datasets. A popular implementation of t-SNE uses the Barnes-Hut algorithm to
|
||||
approximate the gradient at each iteration of gradient descent. This
|
||||
implementation differs in these ways:
|
||||
|
||||
@itemize
|
||||
@item Instead of approximating the N-body simulation using Barnes-Hut, we
|
||||
interpolate onto an equispaced grid and use FFT to perform the convolution.
|
||||
@item Instead of computing nearest neighbors using vantage-point trees, we
|
||||
approximate nearest neighbors using the Annoy library. The neighbor lookups
|
||||
are multithreaded to take advantage of machines with multiple cores.
|
||||
@end itemize
|
||||
")
|
||||
;; See LICENSE.txt for details on what license applies to what files.
|
||||
(license (list license:bsd-4 license:expat license:asl2.0))))
|
||||
|
||||
(define-public python-scanpy
|
||||
(package
|
||||
(name "python-scanpy")
|
||||
|
Loading…
x
Reference in New Issue
Block a user