Initial import of AI-NeuralNet-Mesh-0.44.

This module to implement an accurate neural network mesh.
This commit is contained in:
kevlo 2001-01-23 15:06:45 +00:00
parent c45055c952
commit 1088ec137f
5 changed files with 42 additions and 0 deletions

View File

@ -0,0 +1,24 @@
# $OpenBSD: Makefile,v 1.1.1.1 2001/01/23 15:06:45 kevlo Exp $
DISTNAME= AI-NeuralNet-Mesh-0.44
PKGNAME= p5-${DISTNAME}
CATEGORIES= math perl5
NEED_VERSION= 1.352
MAINTAINER= Kevin Lo <kevlo@openbsd.org>
PERMIT_PACKAGE_CDROM= Yes
PERMIT_PACKAGE_FTP= Yes
PERMIT_DISTFILES_CDROM= Yes
PERMIT_DISTFILES_FTP= Yes
MASTER_SITES= ${MASTER_SITE_PERL_CPAN}
MASTER_SITE_SUBDIR= AI
EXTRACT_SUFX= .zip
CONFIGURE_STYLE= perl
WRKDIST= ${WRKDIR}
.include <bsd.port.mk>

View File

@ -0,0 +1,3 @@
MD5 (AI-NeuralNet-Mesh-0.44.zip) = 5d1c68c7d494da158ce50c263a7d77a1
RMD160 (AI-NeuralNet-Mesh-0.44.zip) = 40796277119fb8d7ad6a308c32616f6159bd923e
SHA1 (AI-NeuralNet-Mesh-0.44.zip) = 7d36e0d2794fe269ab6a34816a60a8707159fca3

View File

@ -0,0 +1 @@
module to implement an accurate neural network mesh

View File

@ -0,0 +1,10 @@
AI::NeuralNet::Mesh is an optimized, accurate neural network Mesh.
It was designed with accruacy and speed in mind.
This network model is very flexable. It will allow for clasic binary
operation or any range of integer or floating-point inputs you care
to provide. With this you can change activation types on a per node or
per layer basis (you can even include your own anonymous subs as
activation types). You can add sigmoid transfer functions and control
the threshold. You can learn data sets in batch, and load CSV data
set files. You can do almost anything you need to with this module.

View File

@ -0,0 +1,4 @@
@comment $OpenBSD: PLIST,v 1.1.1.1 2001/01/23 15:06:45 kevlo Exp $
libdata/perl5/site_perl/AI/NeuralNet/Mesh.pm
man/man3/AI::NeuralNet::Mesh.3p
@dirrm libdata/perl5/site_perl/AI/NeuralNet