finance/py-ffn: New port: Financial functions for Python

This commit is contained in:
Yuri Victorovich 2022-12-26 18:33:12 -08:00
parent 6682a490d7
commit aecb623aef
4 changed files with 43 additions and 0 deletions

View File

@ -102,6 +102,7 @@
SUBDIR += py-bitcoin
SUBDIR += py-ebaysdk
SUBDIR += py-exchange-calendars
SUBDIR += py-ffn
SUBDIR += py-financedatabase
SUBDIR += py-finnhub-python
SUBDIR += py-finviz

35
finance/py-ffn/Makefile Normal file
View File

@ -0,0 +1,35 @@
PORTNAME= ffn
DISTVERSIONPREFIX= v
DISTVERSION= 0.3.6
CATEGORIES= finance python
#MASTER_SITES= CHEESESHOP # no tests
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
MAINTAINER= yuri@FreeBSD.org
COMMENT= Financial functions for Python
WWW= http://pmorissette.github.io/ffn/
LICENSE= MIT
LICENSE_FILE= ${WRKSRC}/LICENSE.txt
PY_DEPENDS= ${PYTHON_PKGNAMEPREFIX}decorator>=4:devel/py-decorator@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}future>=0.15:devel/py-future@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}matplotlib>=1:math/py-matplotlib@${PY_FLAVOR} \
${PYNUMPY} \
${PYTHON_PKGNAMEPREFIX}pandas-datareader>=0.2:math/py-pandas-datareader@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}pandas>=0.19:math/py-pandas@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}scikit-learn>=0.15:science/py-scikit-learn@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}scipy>=0.15:science/py-scipy@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}tabulate>=0.7.5:devel/py-tabulate@${PY_FLAVOR}
BUILD_DEPENDS= ${PY_DEPENDS}
RUN_DEPENDS= ${PY_DEPENDS}
USES= python:3.6+
USE_PYTHON= distutils autoplist pytest
USE_GITHUB= yes
GH_ACCOUNT= pmorissette
NO_ARCH= yes
.include <bsd.port.mk>

3
finance/py-ffn/distinfo Normal file
View File

@ -0,0 +1,3 @@
TIMESTAMP = 1672107370
SHA256 (pmorissette-ffn-v0.3.6_GH0.tar.gz) = 83c173c8b9e35c8f25b1cfd2c70b4c3f7dbd8810aa8b988ae845607697152804
SIZE (pmorissette-ffn-v0.3.6_GH0.tar.gz) = 1642326

4
finance/py-ffn/pkg-descr Normal file
View File

@ -0,0 +1,4 @@
ffn is a library that contains many useful functions for those who work in
quantitative finance. It stands on the shoulders of giants (Pandas, Numpy,
Scipy, etc.) and provides a vast array of utilities, from performance
measurement and evaluation to graphing and common data transformations.