New port: math/py-ssm: Bayesian learning and inference for state space models
This commit is contained in:
parent
3480167573
commit
7bd3e97799
Notes:
svn2git
2021-03-31 03:12:20 +00:00
svn path=/head/; revision=552155
@ -837,6 +837,7 @@
|
||||
SUBDIR += py-snuggs
|
||||
SUBDIR += py-spectral
|
||||
SUBDIR += py-spot
|
||||
SUBDIR += py-ssm
|
||||
SUBDIR += py-statsmodels
|
||||
SUBDIR += py-statsmodels010
|
||||
SUBDIR += py-svgmath
|
||||
|
32
math/py-ssm/Makefile
Normal file
32
math/py-ssm/Makefile
Normal file
@ -0,0 +1,32 @@
|
||||
# $FreeBSD$
|
||||
|
||||
PORTNAME= ssm
|
||||
DISTVERSION= 0.0.1
|
||||
CATEGORIES= math python
|
||||
MASTER_SITES= CHEESESHOP
|
||||
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
|
||||
|
||||
MAINTAINER= yuri@FreeBSD.org
|
||||
COMMENT= Bayesian learning and inference for state space models
|
||||
|
||||
LICENSE= MIT
|
||||
|
||||
PY_DEPENDS= ${PYNUMPY} \
|
||||
${PYTHON_PKGNAMEPREFIX}autograd>0:math/py-autograd@${PY_FLAVOR} \
|
||||
${PYTHON_PKGNAMEPREFIX}future>0:devel/py-future@${PY_FLAVOR} \
|
||||
${PYTHON_PKGNAMEPREFIX}matplotlib>0:math/py-matplotlib@${PY_FLAVOR} \
|
||||
${PYTHON_PKGNAMEPREFIX}numba>0:devel/py-numba@${PY_FLAVOR} \
|
||||
${PYTHON_PKGNAMEPREFIX}scipy>0:science/py-scipy@${PY_FLAVOR} \
|
||||
${PYTHON_PKGNAMEPREFIX}scikit-learn>0:science/py-scikit-learn@${PY_FLAVOR} \
|
||||
${PYTHON_PKGNAMEPREFIX}seaborn>0:math/py-seaborn@${PY_FLAVOR} \
|
||||
${PYTHON_PKGNAMEPREFIX}tqdm>0:misc/py-tqdm@${PY_FLAVOR}
|
||||
BUILD_DEPENDS= ${PY_DEPENDS}
|
||||
RUN_DEPENDS= ${PY_DEPENDS}
|
||||
|
||||
USES= python
|
||||
USE_PYTHON= distutils cython concurrent autoplist
|
||||
|
||||
post-install:
|
||||
${STRIP_CMD} ${STAGEDIR}${PYTHONPREFIX_SITELIBDIR}/${PORTNAME}/*.so
|
||||
|
||||
.include <bsd.port.mk>
|
3
math/py-ssm/distinfo
Normal file
3
math/py-ssm/distinfo
Normal file
@ -0,0 +1,3 @@
|
||||
TIMESTAMP = 1602537377
|
||||
SHA256 (ssm-0.0.1.tar.gz) = b3eca53d3049306097de5977bb5c663f0c5f11db14e77ad7515c2902067f0458
|
||||
SIZE (ssm-0.0.1.tar.gz) = 309185
|
21
math/py-ssm/pkg-descr
Normal file
21
math/py-ssm/pkg-descr
Normal file
@ -0,0 +1,21 @@
|
||||
This package has fast and flexible code for simulating, learning, and performing
|
||||
inference in a variety of state space models. Currently, it supports:
|
||||
* Hidden Markov Models (HMM)
|
||||
* Auto-regressive HMMs (ARHMM)
|
||||
* Input-output HMMs (IOHMM)
|
||||
* Hidden Semi-Markov Models (HSMM)
|
||||
* Linear Dynamical Systems (LDS)
|
||||
* Switching Linear Dynamical Systems (SLDS)
|
||||
* Recurrent SLDS (rSLDS)
|
||||
* Hierarchical extensions of the above
|
||||
* Partial observations and missing data
|
||||
|
||||
It supports the following observation models:
|
||||
* Gaussian
|
||||
* Student's
|
||||
* Bernoulli
|
||||
* Poisson
|
||||
* Categorical
|
||||
* Von Mises
|
||||
|
||||
WWW: https://github.com/lindermanlab/ssm
|
Loading…
Reference in New Issue
Block a user