coqbooks/src/thue_morse3.v

2458 lines
100 KiB
Coq

(** * The Thue-Morse sequence (part 3)
TODO
Theorem tm_step_rev : forall (n : nat),
Theorem tm_step_palindromic_full : forall (n : nat),
Theorem tm_step_palindromic_full_even : forall (n : nat),
Theorem tm_step_palindromic_length_12 :
*)
Require Import thue_morse.
Require Import thue_morse2.
Require Import Coq.Lists.List.
Require Import PeanoNat.
Require Import Nat.
Require Import Bool.
Import ListNotations.
Theorem tm_step_rev : forall (n : nat),
tm_step n = rev (tm_step n) \/ tm_step n = map negb (rev (tm_step n)).
Proof.
assert (Z: forall l, map (fun x : bool => negb (negb x)) l = l).
intro l. induction l. reflexivity. simpl. rewrite negb_involutive.
rewrite IHl. reflexivity.
intro n. induction n. left. reflexivity.
rewrite tm_build. destruct IHn ; [right | left];
rewrite rev_app_distr; rewrite H at 1;
rewrite H at 2; rewrite <- map_rev.
rewrite map_app. rewrite map_map. rewrite Z. reflexivity.
rewrite map_map. rewrite Z. reflexivity.
Qed.
Lemma tm_step_palindromic_odd : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ tl
-> a = rev a
-> odd (length a) = true
-> length a < 4.
Proof.
(* end of the lemma *)
assert (LEMMA: forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ tl
-> a = rev a
-> odd (length a) = true
-> length a <> 5).
intros n hd a tl. intros H I J.
destruct a. easy. destruct a. easy.
destruct a. easy. destruct a. easy.
destruct a. easy.
destruct a. (* case of length 5 *)
assert (exists (u v : list bool) (d: bool),
b::b0::b1::b2::b3::nil = u ++ [d;d] ++ v).
assert (4 < length (b::b0::b1::b2::b3::nil)). simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
apply Nat.lt_0_succ. generalize H0. generalize H.
apply tm_step_consecutive_identical_length.
destruct H0. destruct H0. destruct H0.
assert (K: {b=b0} + {~ b=b0}). apply bool_dec.
assert (L: {b0=b1} + {~ b0=b1}). apply bool_dec.
assert (M: {b1=b2} + {~ b1=b2}). apply bool_dec.
assert (N: {b2=b3} + {~ b2=b3}). apply bool_dec.
destruct K. rewrite e in H. rewrite e in I.
destruct N. rewrite e0 in H.
replace ([b0;b0;b1;b3;b3] ++ tl) with ([b0;b0] ++ [b1] ++ [b3;b3] ++ tl) in H.
apply tm_step_consecutive_identical' in H. inversion H. reflexivity.
inversion I. rewrite H3 in n0. contradiction n0.
destruct L. rewrite e in H. rewrite e in I.
destruct M. rewrite <- e0 in H.
replace (hd ++ [b; b1; b1; b1; b3] ++ tl)
with ((hd ++ [b]) ++ [b1] ++ [b1] ++ [b1] ++ ([b3] ++ tl)) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
apply Nat.lt_0_succ. rewrite <- app_assoc. simpl. reflexivity.
inversion I. rewrite H3 in n1. contradiction n1.
destruct M. rewrite <- e in I. inversion I.
rewrite H3 in n1. contradiction n1.
destruct N. rewrite e in I. inversion I.
rewrite H2 in n0. rewrite H3 in n0. contradiction n0.
destruct x. inversion H0.
rewrite H2 in n0. rewrite H3 in n0. contradiction n0.
reflexivity.
destruct x. inversion H0.
rewrite H3 in n1. rewrite H4 in n1. contradiction n1.
reflexivity.
destruct x. inversion H0.
rewrite H4 in n2. rewrite H5 in n2. contradiction n2.
reflexivity.
destruct x. inversion H0.
rewrite H5 in n3. rewrite H6 in n3. contradiction n3.
reflexivity.
assert (length [b;b0;b1;b2;b3] = length [b;b0;b1;b2;b3]).
reflexivity. rewrite H0 in H1 at 2. simpl in H1.
apply Nat.succ_inj in H1. apply Nat.succ_inj in H1.
apply Nat.succ_inj in H1. apply Nat.succ_inj in H1.
rewrite app_length in H1. simpl in H1.
rewrite Nat.add_succ_r in H1. rewrite Nat.add_succ_r in H1.
apply Nat.succ_inj in H1. apply O_S in H1. contradiction H1.
simpl. apply not_eq_S. apply not_eq_S. apply not_eq_S.
apply not_eq_S. apply not_eq_S. apply Nat.neq_succ_0.
(* end of the lemma *)
intros n hd a tl. intros H I J.
assert (length a <= 5 \/ 5 < length a). apply Nat.le_gt_cases.
destruct H0.
apply Nat.lt_eq_cases in H0. destruct H0.
rewrite Nat.lt_succ_r in H0.
apply Nat.lt_eq_cases in H0. destruct H0. assumption.
rewrite H0 in J. inversion J.
assert (length a <> 5). generalize J. generalize I. generalize H.
apply LEMMA. rewrite H0 in H1. contradiction H1.
reflexivity.
(* main part of the proof:
each odd palindromic factor greater than 5
contains a palindromic subfactor of length 5 *)
pose (t := length a - 5). assert (Nat.even t = true).
unfold t. rewrite Nat.even_sub. rewrite <- Nat.negb_odd.
rewrite J. reflexivity. generalize H0.
apply Nat.lt_le_incl.
pose (u := firstn (Nat.div2 t) a).
pose (v := firstn 5 (skipn (Nat.div2 t) a)).
pose (w := skipn (Nat.div2 t + 5) a).
assert (a = u ++ v ++ w).
unfold u. unfold v. unfold w.
rewrite firstn_skipn_comm.
replace (Nat.div2 t) with (min (Nat.div2 t) (Nat.div2 t + 5)) at 1.
rewrite <- firstn_firstn. rewrite app_assoc. rewrite firstn_skipn.
rewrite firstn_skipn. reflexivity.
apply Nat.min_l. rewrite <- Nat.add_0_r at 1.
apply Nat.add_le_mono_l. apply le_0_n.
assert (Nat.Even (length a - 5)).
apply Nat.EvenT_Even. apply Nat.even_EvenT. rewrite Nat.even_sub.
rewrite <- Nat.negb_odd. rewrite J. reflexivity.
apply Nat.lt_le_incl. assumption.
assert (length v = 5). unfold v. apply firstn_length_le.
rewrite skipn_length. unfold t.
rewrite Nat.mul_le_mono_pos_l with (p := 2).
rewrite Nat.mul_sub_distr_l.
replace (2 * Nat.div2 (length a - 5))
with (Nat.double (Nat.div2 (length a - 5))).
rewrite <- Nat.Even_double.
replace (2 * length a) with ((length a + 5) + (length a - 5)).
rewrite Nat.add_sub. replace (2*5) with (5+5).
apply Nat.add_le_mono_r. apply Nat.lt_le_incl. assumption.
reflexivity. rewrite <- Nat.add_assoc.
rewrite Nat.add_sub_assoc. rewrite Nat.add_sub_swap. simpl.
rewrite Nat.add_0_r. reflexivity. apply Nat.le_refl. apply Nat.lt_le_incl.
assumption. assumption.
apply Nat.double_twice. apply Nat.lt_0_2.
assert (length u = length w). unfold u. unfold w.
rewrite firstn_length. rewrite skipn_length. rewrite Nat.min_l.
unfold t. rewrite <- Nat.mul_cancel_l with (p := 2).
rewrite <- Nat.double_twice. rewrite <- Nat.Even_double.
rewrite Nat.mul_sub_distr_l. rewrite Nat.mul_add_distr_l.
rewrite <- Nat.double_twice. rewrite <- Nat.double_twice.
rewrite <- Nat.Even_double. rewrite Nat.double_twice.
rewrite <- Nat.add_sub_swap. rewrite <- Nat.add_sub_assoc.
replace (2 * length a) with ((length a - 5) + (length a + 5)).
simpl. rewrite Nat.add_sub. reflexivity.
rewrite Nat.add_comm. rewrite <- Nat.add_assoc.
rewrite Nat.add_sub_assoc. rewrite Nat.add_sub_swap. simpl.
rewrite Nat.add_0_r. reflexivity. apply Nat.le_refl. apply Nat.lt_le_incl.
assumption. simpl. apply le_n_S. apply le_n_S. apply le_n_S. apply le_n_S.
apply le_n_S. apply le_0_n. apply Nat.lt_le_incl. assumption.
assumption. assumption. easy.
unfold t.
rewrite Nat.mul_le_mono_pos_l with (p := 2). rewrite <- Nat.double_twice.
rewrite <- Nat.Even_double. simpl. rewrite Nat.add_0_r.
rewrite <- Nat.add_0_r at 1. apply Nat.add_le_mono.
apply Nat.le_sub_l. apply le_0_n. assumption. apply Nat.lt_0_2.
assert (v = rev v). rewrite H2 in I.
rewrite rev_app_distr in I. rewrite rev_app_distr in I.
rewrite <- app_assoc in I.
assert (u = rev w). generalize H5. rewrite <- rev_length with (l := w).
generalize I. apply app_eq_length_head.
rewrite H6 in I. rewrite rev_involutive in I.
apply app_inv_head in I. apply app_inv_tail in I. assumption.
assert (length v <> 5).
assert (odd (length v) = true). rewrite H4. reflexivity.
generalize H7. generalize H6. generalize H. rewrite H2.
rewrite <- app_assoc. rewrite <- app_assoc. rewrite app_assoc.
apply LEMMA. rewrite H4 in H7. contradiction H7.
reflexivity.
Qed.
Lemma tm_step_palindromic_even_center :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 0 < length a
-> even (length (hd ++ a)) = true.
Proof.
intros n hd a tl. intros H I.
assert (J: a = removelast a ++ [ last a false ]).
apply app_removelast_last.
assert (K: {a=nil} + {~ a=nil}). apply list_eq_dec. apply bool_dec.
destruct K. rewrite e in I. inversion I. assumption.
rewrite J in H. rewrite rev_app_distr in H.
rewrite <- app_assoc in H. rewrite <- app_assoc in H.
rewrite app_assoc in H.
replace
([last a false] ++ rev [last a false] ++ rev (removelast a) ++ tl)
with ([last a false; last a false] ++ (rev (removelast a) ++ tl)) in H.
apply tm_step_consecutive_identical in H. rewrite J.
rewrite app_assoc. rewrite app_length. rewrite Nat.even_add.
rewrite <- Nat.negb_odd. rewrite H. reflexivity.
reflexivity.
Qed.
Lemma tm_step_palindromic_even_center' :
forall (n k m: nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 0 < length a
-> length (hd ++ a) = S (2 * k) * 2^m
-> odd m = true.
Proof.
intros n k m hd a tl. intros H I J.
assert (Z := H).
assert (K: {a=nil} + {~ a=nil}). apply list_eq_dec. apply bool_dec.
destruct K. rewrite e in I. inversion I.
assert (L: a = removelast a ++ [ last a false ]).
apply app_removelast_last. assumption.
rewrite L in H. rewrite rev_app_distr in H.
assert (nth_error (tm_step n) (length (hd++a))
= nth_error (tm_step n) (pred (length (hd++a)))).
rewrite H.
rewrite app_assoc. rewrite nth_error_app2.
symmetry. rewrite <- app_assoc. rewrite <- app_assoc.
rewrite app_assoc. rewrite nth_error_app2.
rewrite <- app_removelast_last. rewrite Nat.sub_diag.
replace (hd++a) with ((hd ++ removelast a) ++ [last a false]).
rewrite app_length. rewrite Nat.add_1_r. rewrite <- pred_Sn.
rewrite Nat.sub_diag. reflexivity. rewrite L at 3.
rewrite <- app_assoc. reflexivity. assumption.
rewrite L at 2. rewrite app_assoc.
replace (length ((hd ++ removelast a) ++ [last a false]))
with (length (hd ++ removelast a) + length [last a false]).
rewrite Nat.add_1_r. rewrite <- pred_Sn. apply Nat.le_refl.
symmetry. rewrite app_length. reflexivity.
rewrite <- app_removelast_last. apply Nat.le_refl.
assumption.
generalize H0. rewrite J. apply tm_step_pred.
rewrite <- J. rewrite <- tm_size_power2. rewrite Z.
rewrite app_length. rewrite app_length.
apply Nat.add_lt_mono_l. rewrite app_length.
rewrite <- Nat.add_0_r at 1.
apply Nat.add_lt_mono_l. rewrite app_length. rewrite rev_length.
assert (0 <= length tl). apply le_0_n. rewrite <- Nat.add_0_r at 1.
apply Nat.add_lt_le_mono; assumption.
Qed.
Theorem tm_step_palindromic_full : forall (n : nat),
odd n = true -> tm_step (S n) = (tm_step n) ++ rev (tm_step n).
Proof.
intro n. intro H.
apply Nat.odd_OddT in H. apply Nat.OddT_Odd in H.
apply Nat.Odd_double in H. rewrite H. rewrite tm_step_odd_step.
rewrite <- tm_build. reflexivity.
Qed.
(* very close to the previous one but we add the case n=0 here *)
Theorem tm_step_palindromic_full_even : forall (n : nat),
even n = true -> tm_step n = rev (tm_step n).
Proof.
intro n. intro H. destruct n. reflexivity.
rewrite Nat.even_succ in H. apply tm_step_palindromic_full in H.
rewrite H. rewrite rev_app_distr. rewrite rev_involutive.
reflexivity.
Qed.
(**
In this notebook I call "proper palindrome" in the Thue-Morse sequence,
any palindromic subsequence such that the middle (of the palindromic
subsequence) is not also the middle of a wider palindromic subsequence.
In ther words, a proper palindrome can not be enlarged by adding more
termes on both sides.
*)
(* palidrome 2*4 : soit centré en 4n soit pas plus de 2*6 *)
(* modifier l'énoncé : ajouter le modulo = 2 ET la différence sur le 7ème
ET existence d'un palindrome 2 * - *)
Lemma tm_step_palindromic_length_8 :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> length a = 4
-> length (hd ++ a) mod 4 = 0
\/ nth_error hd (length hd - 3) <> nth_error tl 2.
Proof.
intros n hd a tl. intros H I.
(* proof that length hd++a is even *)
assert (P: even (length (hd ++ a)) = true).
assert (0 < length a). rewrite I. apply Nat.lt_0_succ. generalize H0.
generalize H. apply tm_step_palindromic_even_center.
assert (M: length (hd ++ a) mod 4 = 0 \/ length (hd ++ a) mod 4 = 2).
generalize P. apply even_mod4.
(* proof that length hd is even *)
assert (Q: even (length hd) = true). rewrite app_length in P.
rewrite Nat.even_add_even in P. assumption. rewrite I.
apply Nat.EvenT_Even. apply Nat.even_EvenT. reflexivity.
(* construction de a *)
destruct a. inversion I. destruct a. inversion I.
destruct a. inversion I. destruct a. inversion I.
destruct a. simpl in H.
(* proof that b1 <> b2 *)
assert ({b1=b2} + {~ b1=b2}). apply bool_dec. destruct H0.
replace (hd ++ b :: b0 :: b1 :: b2 :: b2 :: b1 :: b0 :: b :: tl)
with ((hd ++ b :: b0 :: nil)
++ [b1] ++ [b2] ++ [b2] ++ b1 :: b0 :: b :: tl) in H.
rewrite e in H. apply tm_step_cubefree in H. contradiction H.
reflexivity. apply Nat.lt_0_1. rewrite <- app_assoc. reflexivity.
(* proof that n > 2 *)
assert (2 < n).
assert (J: 0 + length (b :: b0 :: b1 :: b2 :: b2 :: b1 :: b0 :: b :: tl)
<= length hd
+ length (b :: b0 :: b1 :: b2 :: b2 :: b1 :: b0 :: b :: tl)).
apply Nat.add_le_mono. apply le_0_n. apply Nat.le_refl.
rewrite Nat.add_0_l in J. rewrite <- app_length in J. rewrite <- H in J.
rewrite tm_size_power2 in J.
destruct n. inversion J. apply Nat.nle_succ_0 in H1. contradiction H1.
destruct n. inversion J. inversion H1.
apply Nat.nle_succ_0 in H3. contradiction H3.
destruct n. inversion J. inversion H1. inversion H3. inversion H5.
inversion H7. rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
apply Nat.lt_0_succ.
(* proof that hd <> nil *)
destruct hd.
assert (Z: 4 < 2^n). replace 4 with (2^2).
apply Nat.pow_lt_mono_r. apply Nat.lt_1_2. assumption.
assert (Some b2 = nth_error (tm_step n) 3). rewrite H. reflexivity.
replace (nth_error (tm_step n) 3) with (nth_error (tm_step 3) 3) in H1.
simpl in H1.
assert (Some b2 = nth_error (tm_step n) 4). rewrite H. reflexivity.
replace (nth_error (tm_step n) 4) with (nth_error (tm_step 3) 4) in H2.
simpl in H2.
rewrite H1 in H2. inversion H2. apply tm_step_stable. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
apply Nat.lt_0_succ. assumption. apply tm_step_stable. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
assert (3 < 4).
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
generalize Z. generalize H2. apply Nat.lt_trans.
(* proof that tl <> nil *)
destruct tl.
assert (Z: 4 < 2^n). replace 4 with (2^2).
apply Nat.pow_lt_mono_r. apply Nat.lt_1_2. assumption.
assert (Y: tm_step n = rev (tm_step n)
\/ tm_step n = map negb (rev (tm_step n))). apply tm_step_rev.
destruct Y; rewrite H in H1 at 2; rewrite rev_app_distr in H1.
assert (Some b2 = nth_error (tm_step n) 3). rewrite H1. reflexivity.
replace (nth_error (tm_step n) 3) with (nth_error (tm_step 3) 3) in H2.
simpl in H2.
assert (Some b2 = nth_error (tm_step n) 4). rewrite H1. reflexivity.
replace (nth_error (tm_step n) 4) with (nth_error (tm_step 3) 4) in H3.
simpl in H3.
rewrite H2 in H3. inversion H3. apply tm_step_stable. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
apply Nat.lt_0_succ. assumption. apply tm_step_stable. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
assert (3 < 4).
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
generalize Z. generalize H3. apply Nat.lt_trans.
assert (Some (negb b2) = nth_error (tm_step n) 3). rewrite H1.
rewrite nth_error_map. reflexivity.
replace (nth_error (tm_step n) 3) with (nth_error (tm_step 3) 3) in H2.
simpl in H2.
assert (Some (negb b2) = nth_error (tm_step n) 4). rewrite H1.
rewrite nth_error_map. reflexivity.
replace (nth_error (tm_step n) 4) with (nth_error (tm_step 3) 4) in H3.
simpl in H3.
rewrite H2 in H3. inversion H3. apply tm_step_stable. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
apply Nat.lt_0_succ. assumption. apply tm_step_stable. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
assert (3 < 4).
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
generalize Z. generalize H3. apply Nat.lt_trans.
(* FIRST PART OF THE PROOF: case b0 = b1 *)
(* première hypothèse b0 = b1 mais alors on construit vers la
gauche jusqu'à (lest hd) et l'on a dans l'ordre jusqu'au centre :
b1 | (negb b1) b1 | b1 (negb b1 ||
et les quatre premiers termes vont impliquer que le centre soit en 4n+2 *)
assert ({b0=b1} + {~ b0=b1}). apply bool_dec. destruct H1.
rewrite e in H.
(* on a alors b = negb b1 (car dans le même bloc pair on a 01 ou 10 *)
assert ({b=b1} + {~ b=b1}). apply bool_dec. destruct H1.
rewrite e0 in H.
replace
((b3 :: hd) ++ b1 :: b1 :: b1 :: b2 :: b2 :: b1 :: b1 :: b1 :: b4 :: tl)
with
((b3 :: hd) ++ [b1] ++ [b1] ++ [b1]
++ b2 :: b2 :: b1 :: b1 :: b1 :: b4 :: tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
apply Nat.lt_0_1. reflexivity.
(* à ce stade on a F T | T F || F T T F
trois cas :
(??? T) | F T T F || F T T F | ??? impossible à gauche
(T F) | F T T F || F T T F | (F T) cube
(T F) | F T T F || F T T F | (T F) OK, diff + impossible à droite
*)
rewrite app_removelast_last with (l := b3::hd) (d := false) in H.
rewrite <- app_assoc in H.
assert ({last (b3::hd) false=b1} + {~ last (b3::hd) false=b1}).
apply bool_dec. destruct H1. rewrite e0 in H.
(* un cas à étudier
(??? T) | F T T F || F T T F | ??? impossible à gauche
*)
destruct M. left. assumption. (* ici on postule le modulo = 2 *)
rewrite app_removelast_last with (l := b3::hd) (d := false) in Q.
rewrite last_length in Q. rewrite Nat.even_succ in Q. apply odd_mod4 in Q.
rewrite app_removelast_last with (l := b3::hd) (d := false) in H1.
destruct Q.
assert (exists x, firstn 2 [b1;b;b1;b1] = [x;x]). generalize H2.
assert (length [b1;b;b1;b1] = 4). reflexivity. generalize H3.
replace (
removelast (b3 :: hd) ++
[b1] ++ b :: b1 :: b1 :: b2 :: b2 :: b1 :: b1 :: b :: b4 :: tl )
with (
removelast (b3 :: hd) ++ [b1;b;b1;b1]
++ (b2 :: b2 :: b1 :: b1 :: b :: b4 :: tl )) in H.
generalize H. apply tm_step_factor4_1mod4. reflexivity.
destruct H3. inversion H3. rewrite <- H6 in H5. rewrite H5 in n1.
contradiction n1. reflexivity.
rewrite app_length in H1. rewrite app_length in H1.
rewrite <- Nat.add_assoc in H1. rewrite <- Nat.add_mod_idemp_l in H1.
rewrite H2 in H1. inversion H1. easy. easy. easy.
(* Deux cas
(T F) | F T T F || F T T F | (F T) cube
(T F) | F T T F || F T T F | (T F) impossible à droite
*)
assert ({b4=b1} + {~ b4=b1}). apply bool_dec. destruct H1. rewrite e0 in H.
(* un sous-cas :
(T F) | F T T F || F T T F | (T F) impossible à droite
*)
destruct M. left. assumption. (* ici on postule le modulo = 2 *)
rewrite e in H1.
assert (length (((b3 :: hd) ++ [b; b1; b1; b2]) ++ [b2]) mod 4 = 3).
rewrite app_length. rewrite <- Nat.add_mod_idemp_l. rewrite H1.
reflexivity. easy.
replace(
removelast (b3 :: hd) ++ [last (b3 :: hd) false] ++
b :: b1 :: b1 :: b2 :: b2 :: b1 :: b1 :: b :: b1 :: tl )
with (
(((b3 :: hd) ++ [b; b1; b1; b2]) ++ [b2]) ++ [b1; b1;b;b1] ++ tl) in H.
assert (exists x, skipn 2 [b1;b1;b;b1] = [x;x]). generalize H2.
assert (length [b1;b1;b;b1] = 4). reflexivity. generalize H3.
generalize H. apply tm_step_factor4_3mod4.
destruct H3. inversion H3. rewrite <- H6 in H5. rewrite H5 in n1.
contradiction n1. reflexivity.
symmetry. rewrite app_assoc. rewrite <- app_removelast_last.
rewrite <- app_assoc. rewrite <- app_assoc. reflexivity. easy.
(* un sous-cas
(T F) | F T T F || F T T F | (F T) cube
*)
assert (b4 = b). destruct b4; destruct b1; destruct b.
reflexivity. contradiction n3. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n3. reflexivity. reflexivity. rewrite H1 in H.
assert (b2 = b). destruct b2; destruct b1; destruct b.
reflexivity. contradiction n0. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n0. reflexivity. reflexivity. rewrite H2 in H.
assert (last (b3::hd) false = b).
destruct (last (b3::hd) false); destruct b1; destruct b.
reflexivity. contradiction n2. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n2. reflexivity. reflexivity.
(* élargir hd et tl à l'aide des booléens b5 (gauche) et b6 (droite) *)
destruct hd. inversion Q. destruct tl.
assert (0 < n). apply Nat.lt_succ_l. apply Nat.lt_succ_l. assumption.
apply tm_step_length_even in H4. rewrite H in H4.
rewrite app_assoc in H4. rewrite <- app_removelast_last in H4.
rewrite app_length in H4. rewrite Nat.even_add in H4.
rewrite Q in H4. inversion H4. easy. rewrite H3 in H.
rewrite app_removelast_last
with (l := removelast (b3::b5::hd)) (d := false) in H.
rewrite <- app_assoc in H.
(* assigner
last (removelast (b3 :: b5 :: hd)) false = b1
b6 = b1
*)
assert ({last (removelast (b3 :: b5 :: hd)) false=b}
+ {~ last (removelast (b3 :: b5 :: hd)) false=b}). apply bool_dec.
destruct H4. rewrite e0 in H.
replace (
removelast (removelast (b3 :: b5 :: hd)) ++ [b] ++ [b]
++ b :: b1 :: b1 :: b :: b :: b1 :: b1 :: b :: b :: b6 :: tl)
with (
removelast (removelast (b3 :: b5 :: hd)) ++ [b] ++ [b] ++ [b]
++ b1 :: b1 :: b :: b :: b1 :: b1 :: b :: b :: b6 :: tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
apply Nat.lt_0_1. reflexivity.
assert (last (removelast (b3 :: b5 :: hd)) false = b1).
destruct (last (removelast (b3 :: b5 :: hd)) false); destruct b1; destruct b.
reflexivity. reflexivity. contradiction n4. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
contradiction n4. reflexivity. reflexivity. reflexivity. rewrite H4 in H.
assert ({b6=b} + {~ b6=b}). apply bool_dec. destruct H5. rewrite e0 in H.
replace (
removelast (removelast (b3 :: b5 :: hd)) ++ [b1] ++ [b]
++ b :: b1 :: b1 :: b :: b :: b1 :: b1 :: b :: b :: b :: tl)
with (
(removelast (removelast (b3 :: b5 :: hd)) ++ [b1] ++ [b]
++ b :: b1 :: b1 :: b :: b :: b1 :: b1 :: nil)
++ [b] ++ [b] ++ [b] ++ tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
apply Nat.lt_0_1. rewrite <- app_assoc. reflexivity.
assert (b6 = b1). destruct (b6); destruct b1; destruct b.
reflexivity. reflexivity. contradiction n5. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
contradiction n5. reflexivity. reflexivity. reflexivity. rewrite H5 in H.
(* contradiction *)
replace (
removelast (removelast (b3 :: b5 :: hd)) ++
[b1] ++ [b] ++ b :: b1 :: b1 :: b :: b :: b1 :: b1 :: b :: b :: b1 :: tl)
with (removelast (removelast (b3 :: b5 :: hd)) ++
[b1;b;b;b1] ++ [b1;b;b;b1] ++ [b1;b;b;b1] ++ tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
apply Nat.lt_0_succ. reflexivity. easy. easy.
assert (H' := H).
(* SECOND PART PF THE PROOF: case b0 <> b1 *)
(* sinon, sur la base de T F T F || F T F T
quatre cas :
(F T) | T F T F || F T F T | (F T) diff + impossible à droite
(F T) | T F T F || F T F T | (T F) 4n+2 a/rev a/a possible ?
empiriquement : n'apparaît jamais
remonter encore d'un cran et prouver la différence à ce stade,
TFFT TFTF FTFT TFFT (µ de TF TT FF TF) pourquoi impossible ?
FTFT TFTF FTFT TFTF (µ de FF TT FF TT) pourquoi impossible ?
revoir l'énoncé en fonction
(T F) | T F T F || F T F T | (F T) cube
(T F) | T F T F || F T F T | (T F) diff + impossible à gauche
*)
assert ({b=b1} + {~ b=b1}). apply bool_dec. destruct H1. rewrite e in H.
(*
assert (b2 = b0). destruct (b2); destruct b1; destruct b0.
reflexivity. contradiction n0. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n0. reflexivity. reflexivity. rewrite H1 in H.
*)
rewrite app_removelast_last with (l := b3::hd) (d := false) in H.
rewrite <- app_assoc in H.
assert ({last (b3::hd) false=b0} + {~ last (b3::hd) false=b0}).
apply bool_dec. destruct H1. rewrite e0 in H.
(* problème à gauche *)
destruct M. left. assumption. (* ici on postule le modulo = 2 *)
rewrite app_removelast_last with (l := b3::hd) (d := false) in Q.
rewrite last_length in Q. rewrite Nat.even_succ in Q. apply odd_mod4 in Q.
destruct Q.
assert (exists x, firstn 2 [b0;b1;b0;b1] = [x;x]). generalize H2.
assert (length [b0;b1;b0;b1] = 4). reflexivity. generalize H3.
replace (
removelast (b3 :: hd) ++
[b0] ++ b1 :: b0 :: b1 :: b2 :: b2 :: b1 :: b0 :: b1 :: b4 :: tl )
with (
removelast (b3 :: hd) ++ [b0;b1;b0;b1]
++ (b2 :: b2 :: b1 :: b0 :: b1 :: b4 :: tl )) in H.
generalize H. apply tm_step_factor4_1mod4. reflexivity.
destruct H3. inversion H3. rewrite <- H6 in H5. rewrite H5 in n1.
contradiction n1. reflexivity.
assert (exists x, skipn 2 [b0;b1;b0;b1] = [x;x]). generalize H2.
assert (length [b0;b1;b0;b1] = 4). reflexivity. generalize H3.
replace (
removelast (b3 :: hd) ++
[b0] ++ b1 :: b0 :: b1 :: b2 :: b2 :: b1 :: b0 :: b1 :: b4 :: tl )
with (
removelast (b3 :: hd) ++ [b0;b1;b0;b1]
++ (b2 :: b2 :: b1 :: b0 :: b1 :: b4 :: tl )) in H.
generalize H. apply tm_step_factor4_3mod4. reflexivity.
destruct H3. inversion H3. rewrite <- H6 in H5. rewrite H5 in n1.
contradiction n1. reflexivity. easy.
(* nouveau cas : last (b3 :: hd) false <> b0
(F T) | T F T F || F T F T | (F T) diff + impossible à droite
(F T) | T F T F || F T F T | (T F) 4n+2 a/rev a/a possible ?
*)
(* régler d'abord la question du modulo au centre *)
destruct M. left. assumption. (* ici on postule le modulo = 2 *)
assert (last (b3::hd) false = b1).
destruct (last (b3::hd) false); destruct b1; destruct b0.
reflexivity. reflexivity. contradiction n2. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
contradiction n2. reflexivity. reflexivity. reflexivity.
assert ({b4=b0} + {~ b4=b0}). apply bool_dec. destruct H3. rewrite e0 in H.
assert (exists x, skipn 2 [b1;b0;b1;b0] = [x;x]).
replace (removelast (b3 :: hd) ++ [last (b3 :: hd) false] ++
b1 :: b0 :: b1 :: b2 :: b2 :: b1 :: b0 :: b1 :: b0 :: tl)
with (((b3 :: hd) ++ [b1;b0;b1;b2;b2])
++ [b1;b0;b1;b0] ++ tl) in H.
assert (length ((b3::hd) ++ [b1; b0; b1; b2; b2]) mod 4 = 3). rewrite e in H1.
replace ([b1;b0;b1;b2;b2]) with ([b1;b0;b1;b2] ++ [b2]).
rewrite app_assoc. rewrite app_length. rewrite <- Nat.add_mod_idemp_l.
rewrite H1. reflexivity. easy. reflexivity.
assert (length [b1;b0;b1;b0] = 4). reflexivity.
generalize H3. generalize H4. generalize H. apply tm_step_factor4_3mod4.
symmetry. rewrite app_assoc. rewrite <- app_removelast_last.
rewrite <- app_assoc. reflexivity. easy.
destruct H3. inversion H3. rewrite <- H6 in H5. rewrite H5 in n1.
contradiction n1. reflexivity.
assert (b4 = b1). destruct b4; destruct b1; destruct b0.
reflexivity. reflexivity. contradiction n3. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
contradiction n3. reflexivity. reflexivity. reflexivity.
rewrite H3 in H. rewrite H2 in H.
assert (b2 = b0). destruct b2; destruct b1; destruct b0.
reflexivity. contradiction n0. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n0. reflexivity. reflexivity.
rewrite H4 in H.
(* dernier cas (difficile
(F T) | T F T F || F T F T | (T F) 4n+2 a/rev a/a possible ?
remarquer le schéma a ++ (rev a) ++ a
apparaît jusqu'à six termes à gauche et à droite
empiriquement : n'apparaît jamais avec un 7ème palindromique ajouté
remonter encore d'un cran et prouver la différence à ce stade,
TFFT TFTF FTFT TFFT (µ de TF TT FF TF) pourquoi impossible ?
FTFT TFTF FTFT TFTF (µ de FF TT FF TT) pourquoi impossible ?
FTTFTFFT FTTFTF (pb avec le repeating_pattern de 8 ???)
TFT TFT FF TFT TFT (si on part sur 2 mod 8)
(idem en partant de la droite pour 6 mod 8)
Le lemme repeating_patterns se base sur les huit premiers termes de TM :
[False, True, True, False, True, False, False, True]
--> il y a une contradiction à chaque fois
*)
(* on prouve 3 < n *)
assert (R: 2^3 < length (tm_step n)). rewrite H.
rewrite app_length. rewrite <- Nat.add_0_l at 1.
apply Nat.add_le_lt_mono. apply Nat.le_0_l. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
apply Nat.lt_0_succ. rewrite tm_size_power2 in R.
rewrite <- Nat.pow_lt_mono_r_iff in R.
(* on étend hd *)
destruct hd. inversion Q.
rewrite app_removelast_last
with (l := removelast (b3::b5::hd)) (d := false) in H.
assert ({last (removelast (b3 :: b5 :: hd)) false = b1}
+ {~ last (removelast (b3 :: b5 :: hd)) false = b1}).
apply bool_dec. destruct H5. rewrite e0 in H.
rewrite <- app_assoc in H.
replace (b1 :: b0 :: b1 :: b0 :: b0 :: b1 :: b0 :: b1 :: b1 :: tl)
with ([b1] ++ b0 :: b1 :: b0 :: b0 :: b1 :: b0 :: b1 :: b1 :: tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
apply Nat.lt_0_1. reflexivity.
(* on étend tl*)
destruct tl.
assert (tm_step n = rev (tm_step n)
\/ tm_step n = map negb (rev (tm_step n))).
apply tm_step_rev. destruct H5; rewrite H in H5 at 2;
rewrite rev_app_distr in H5; simpl in H5;
assert (odd 0 = true).
assert (nth_error (tm_step n) (S (2*0) * 2^0) =
nth_error (tm_step n) (pred (S (2*0) * 2^0))).
rewrite H5. reflexivity. generalize H6.
apply tm_step_pred. simpl. rewrite <- Nat.pow_0_r with (a := 2) at 1.
apply Nat.pow_lt_mono_r. apply Nat.lt_1_2.
apply Nat.lt_succ_l. apply Nat.lt_succ_l. assumption. inversion H6.
assert (nth_error (tm_step n) (S (2*0) * 2^0) =
nth_error (tm_step n) (pred (S (2*0) * 2^0))).
rewrite H5. reflexivity. generalize H6.
apply tm_step_pred. simpl. rewrite <- Nat.pow_0_r with (a := 2) at 1.
apply Nat.pow_lt_mono_r. apply Nat.lt_1_2.
apply Nat.lt_succ_l. apply Nat.lt_succ_l. assumption. inversion H6.
assert ({b6=b1} + {~ b6=b1}). apply bool_dec. destruct H5. rewrite e0 in H.
replace (
(removelast (removelast (b3 :: b5 :: hd)) ++
[last (removelast (b3 :: b5 :: hd)) false]) ++
[b1] ++ b1 :: b0 :: b1 :: b0 :: b0 :: b1 :: b0 :: b1 :: b1 :: b1 :: tl)
with (
(removelast (removelast (b3 :: b5 :: hd)) ++
[last (removelast (b3 :: b5 :: hd)) false] ++
[b1] ++ b1 :: b0 :: b1 :: b0 :: b0 :: b1 :: b0 :: nil)
++ [b1] ++ [b1] ++ [b1] ++ tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
apply Nat.lt_0_1.
rewrite <- app_assoc. rewrite <- app_assoc. rewrite <- app_assoc.
rewrite <- app_assoc. reflexivity.
(* on assigne les valeurs correctes aux deux extrémités *)
assert (b6 = b0). destruct b6; destruct b1; destruct b0.
reflexivity. contradiction n5. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n5. reflexivity. reflexivity.
rewrite H5 in H.
assert (last (removelast (b3 :: b5 :: hd)) false = b0).
destruct (last (removelast (b3 :: b5 :: hd)) false);
destruct b1; destruct b0.
reflexivity. contradiction n4. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n4. reflexivity. reflexivity.
rewrite H6 in H.
(* on étend hd *)
destruct hd. simpl in H. assert (odd 3 = true). reflexivity.
rewrite <- tm_step_pred with (n := n) (k := 0) in H7.
rewrite H in H7. simpl in H7. inversion H7. rewrite H9 in n1.
contradiction n1. reflexivity. simpl.
replace 8 with (2^3). rewrite <- Nat.pow_lt_mono_r_iff.
assumption. apply Nat.lt_1_2. reflexivity.
rewrite app_removelast_last
with (l := removelast (removelast (b3::b5::b7::hd))) (d := false) in H.
pose (b8 := last (removelast (removelast (b3 :: b5 :: b7 :: hd))) false).
fold b8 in H. rewrite <- app_assoc in H. rewrite <- app_assoc in H.
pose (hd' := removelast (removelast (removelast (b3 :: b5 :: b7 :: hd)))).
fold hd' in H.
(* on étend tl *)
destruct tl.
assert (tm_step n = rev (tm_step n)
\/ tm_step n = map negb (rev (tm_step n))).
apply tm_step_rev. destruct H7; rewrite H in H7 at 2;
rewrite rev_app_distr in H7; simpl in H5.
assert (odd 3 = true). reflexivity.
rewrite <- tm_step_pred with (n := n) (k := 0) in H8.
rewrite H7 in H8. simpl in H8. inversion H8. rewrite H10 in n1.
contradiction n1. reflexivity. simpl.
replace 8 with (2^3). rewrite <- Nat.pow_lt_mono_r_iff.
assumption. apply Nat.lt_1_2. reflexivity.
assert (odd 3 = true). reflexivity.
rewrite <- tm_step_pred with (n := n) (k := 0) in H8.
rewrite H7 in H8. simpl in H8. inversion H8.
destruct b0; destruct b1. contradiction n1. reflexivity.
inversion H10. inversion H10. contradiction n1. reflexivity. simpl.
replace 8 with (2^3). rewrite <- Nat.pow_lt_mono_r_iff.
assumption. apply Nat.lt_1_2. reflexivity.
(* termes à prouver *)
(* lemmes initiaux *)
assert (Y: forall (k : bool) (x : list bool),
length (removelast (k::x)) = length x).
intros k x. rewrite removelast_firstn_len.
replace (length (k::x)) with (S (length x)). rewrite Nat.pred_succ.
rewrite firstn_length. simpl. apply Nat.min_l. apply Nat.le_succ_diag_r.
reflexivity.
assert (Y': forall (k1 k2 : bool) (x : list bool),
length (removelast (removelast (k1::k2::x))) = length x).
intros k1 k2 x.
rewrite removelast_firstn_len. rewrite Y.
replace (length (k2::x)) with (S (length x)).
rewrite Nat.pred_succ. rewrite firstn_length. rewrite Y.
apply Nat.min_l. apply Nat.le_succ_diag_r. reflexivity.
assert (Y'': forall (k1 k2 k3 : bool) (x : list bool),
length (removelast (removelast (removelast (k1::k2::k3::x)))) = length x).
intros k1 k2 k3 x.
rewrite removelast_firstn_len. rewrite removelast_firstn_len.
rewrite Y. replace (length (k2::k3::x)) with (S (length (k3::x))).
rewrite Nat.pred_succ. rewrite firstn_length.
rewrite firstn_length. rewrite Y. rewrite Nat.min_l. rewrite Nat.min_l.
reflexivity. apply Nat.le_succ_diag_r. rewrite Nat.min_l.
replace (length (k3 :: x)) with (S (length x)). rewrite Nat.pred_succ.
apply Nat.le_succ_diag_r. reflexivity.
replace (length (k2 :: k3::x)) with (S (length (k3::x))).
apply Nat.le_succ_diag_r. reflexivity. reflexivity.
(* preuves *)
assert (U:
nth_error (b3 :: b5 :: b7 :: hd) (length (b3 :: b5 :: b7 :: hd) - 3)
= Some b8). unfold b8.
rewrite app_removelast_last with (l := b3::b5::b7::hd) (d := false) at 1.
rewrite app_removelast_last
with (l := (removelast (b3::b5::b7::hd))) (d := false) at 1.
rewrite app_removelast_last
with (l := (removelast (removelast (b3::b5::b7::hd)))) (d := false) at 1.
rewrite <- app_assoc. rewrite <- app_assoc. rewrite nth_error_app2.
rewrite Y''. rewrite <- Nat.sub_add_distr.
replace (length (b3::b5::b7::hd)) with (3 + length hd).
rewrite Nat.sub_diag. reflexivity. reflexivity. rewrite Y''.
replace (length (b3::b5::b7::hd)) with (length hd + 3).
rewrite Nat.add_sub. apply Nat.le_refl. rewrite Nat.add_comm.
reflexivity.
assert (0 < length (removelast (removelast (b3 :: b5 :: b7 :: hd)))).
rewrite Y'. simpl. apply Nat.lt_0_succ.
assert ({removelast (removelast (b3 :: b5 :: b7 :: hd))=nil}
+ {~ removelast (removelast (b3 :: b5 :: b7 :: hd))=nil}).
apply list_eq_dec. apply bool_dec. destruct H8.
rewrite e0 in H7. inversion H7. assumption.
assert (0 < length (removelast (b3 :: b5 :: b7 :: hd))).
rewrite Y. simpl. apply Nat.lt_0_succ.
assert ({removelast (b3 :: b5 :: b7 :: hd)=nil}
+ {~ removelast (b3 :: b5 :: b7 :: hd)=nil}).
apply list_eq_dec. apply bool_dec. destruct H8.
rewrite e0 in H7. inversion H7. assumption.
easy.
assert (T: 8 <= length ((b3 :: b5 :: b7 :: hd) ++ [b; b0; b1; b2])).
destruct hd. inversion Q. rewrite app_length. simpl.
rewrite <- Nat.add_succ_r. rewrite <- Nat.add_succ_r.
rewrite <- Nat.add_succ_r. rewrite <- Nat.add_succ_r.
rewrite <- Nat.add_0_l at 1. apply Nat.add_le_mono.
apply Nat.le_0_l. apply Nat.le_refl.
(* inutile
assert (V: nth_error (b4 :: b6 :: b9 :: tl) 2 = Some b9). reflexivity.
*)
(* analyse finale *)
assert ({b8=b9} + {~ b8=b9}). apply bool_dec. destruct H7. rewrite e0 in H.
(* premier sous-cas : b8 = b9, contradiction lié à repeating_patterns *)
(* lemme initial *)
assert (forall n : nat, n mod 4 = 2 -> n mod 8 = 2 \/ n mod 8 = 6).
intro m. intro A.
assert (m mod (4*2) = m mod 4 + 4 * ((m / 4) mod 2)).
apply Nat.mod_mul_r; easy. rewrite A in H7.
rewrite <- Nat.bit0_mod in H7. replace (4*2) with 8 in H7.
rewrite H7.
destruct (Nat.testbit (m / 4) 0) ; [right | left] ; reflexivity.
reflexivity.
pose (lh := length ((b3 :: b5 :: b7 :: hd) ++ [b; b0; b1; b2])).
fold lh in H1. fold lh in T.
assert ({b9=b0} + {~ b9=b0}). apply bool_dec. destruct H8. rewrite e1 in H.
(* si centre = 8n + 2, alors les cinq premiers sont absurdes *)
(* si centre = 8n + 6, alors les cinq derniers sont absurdes *)
apply H7 in H1. destruct H1.
(* on commence par supposer le centre en 8n+2 : hypothèse H1 *)
assert (lh = 8 * (lh / 8) + lh mod 8). apply Nat.div_mod. easy.
rewrite H1 in H8. rewrite <- Nat.succ_pred_pos with (n := lh/8) in H8.
assert (lh - 8 = 8 * Nat.pred (lh / 8) + 2).
rewrite <- Nat.add_cancel_r with (p := 8). rewrite <- Nat.add_sub_swap.
rewrite Nat.add_sub. rewrite Nat.add_shuffle0. rewrite <- Nat.mul_succ_r.
assumption. assumption.
assert (nth_error (tm_step (3 + (n-3))) (Nat.pred (lh/8) * 8 + 3)
= nth_error (tm_step (3 + (n-3))) (Nat.pred (lh/8) * 8 + 4)).
rewrite Nat.add_comm. rewrite <- Nat.add_sub_swap. rewrite Nat.add_sub.
rewrite H. rewrite Nat.mul_comm.
apply eq_S in H9. symmetry in H9. rewrite <- Nat.add_1_r in H9.
rewrite <- Nat.add_assoc in H9. rewrite Nat.add_1_r in H9.
rewrite H9.
apply eq_S in H9. rewrite <- Nat.add_1_r in H9.
rewrite <- Nat.add_assoc in H9. rewrite Nat.add_1_r in H9.
rewrite H9. unfold lh. unfold hd'.
rewrite nth_error_app2. symmetry. rewrite nth_error_app2. rewrite Y''.
rewrite app_length.
replace (length (b3::b5::b7::hd)) with (S (S (S (length hd)))).
rewrite Nat.add_succ_comm. rewrite Nat.add_succ_comm.
rewrite Nat.add_succ_comm. rewrite <- Nat.sub_succ_l.
rewrite <- Nat.add_succ_r. rewrite Nat.add_sub.
rewrite Nat.sub_succ_l. rewrite Nat.sub_diag. reflexivity.
apply Nat.le_refl. unfold lh in T.
rewrite <- Nat.add_succ_comm. rewrite <- Nat.add_succ_comm.
rewrite <- Nat.add_succ_comm. rewrite app_length in T.
assumption. reflexivity. rewrite Y''.
rewrite app_length.
replace (length (b3::b5::b7::hd)) with (S (S (S (length hd)))).
rewrite Nat.add_succ_comm. rewrite Nat.add_succ_comm.
rewrite Nat.add_succ_comm. rewrite <- Nat.sub_succ_l.
rewrite <- Nat.add_succ_r. rewrite Nat.add_sub.
apply Nat.le_succ_diag_r. rewrite Nat.add_succ_r.
rewrite Nat.add_succ_r. rewrite Nat.add_succ_r.
rewrite <- Nat.succ_le_mono. rewrite <- Nat.succ_le_mono.
rewrite <- Nat.succ_le_mono. replace 5 with (1 + 4).
rewrite <- Nat.add_le_mono_r. destruct hd. inversion Q.
simpl. apply le_n_S. apply le_0_n. reflexivity. reflexivity.
rewrite Y''. rewrite app_length.
replace (length (b3::b5::b7::hd)) with (S (S (S (length hd)))).
rewrite Nat.add_succ_comm. rewrite Nat.add_succ_comm.
rewrite Nat.add_succ_comm. rewrite <- Nat.sub_succ_l.
rewrite <- Nat.add_succ_r. rewrite Nat.add_sub. apply Nat.le_refl.
rewrite Nat.add_succ_r. rewrite Nat.add_succ_r. rewrite Nat.add_succ_r.
rewrite <- Nat.succ_le_mono. rewrite <- Nat.succ_le_mono.
rewrite <- Nat.succ_le_mono. replace 5 with (1 + 4).
rewrite <- Nat.add_le_mono_r. destruct hd. inversion Q.
simpl. apply le_n_S. apply le_0_n. reflexivity. reflexivity.
apply Nat.lt_le_incl. assumption.
rewrite <- tm_step_repeating_patterns in H10. inversion H10.
simpl. rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
simpl. rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
rewrite Nat.mul_lt_mono_pos_l with (p := 8).
rewrite Nat.add_lt_mono_r with (p := 2). rewrite <- H9.
rewrite Nat.add_lt_mono_r with (p := 8).
rewrite <- Nat.add_sub_swap. rewrite Nat.add_sub.
rewrite <- Nat.add_assoc. replace (2+8) with 10.
replace (8) with (2^3) at 1. rewrite <- Nat.pow_add_r.
rewrite Nat.add_sub_assoc. rewrite Nat.add_sub_swap. simpl.
rewrite <- tm_size_power2. rewrite H'. unfold lh.
rewrite app_length. rewrite app_length. rewrite <- Nat.add_assoc.
rewrite <- Nat.add_lt_mono_l. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
apply Nat.lt_0_succ. apply Nat.le_refl.
apply Nat.lt_le_incl. assumption. reflexivity. reflexivity.
assumption. apply Nat.lt_0_succ.
apply Nat.div_le_mono with (c := 8) in T. rewrite Nat.div_same in T.
rewrite Nat.le_succ_l in T. assumption. easy. easy.
(* on change de modulo ; on travaille sur 8k+6 maintenant *)
(* si centre = 8n + 6, alors les cinq derniers sont absurdes *)
assert (lh = 8 * (lh / 8) + lh mod 8). apply Nat.div_mod. easy.
rewrite H1 in H8. rewrite <- Nat.pred_succ with (n := lh/8) in H8.
rewrite Nat.mul_pred_r in H8.
assert (lh + 8 = 8 * S (lh / 8) + 6).
rewrite <- Nat.add_cancel_r with (p := 8) in H8.
rewrite <- Nat.add_sub_swap in H8. rewrite Nat.sub_add in H8. assumption.
rewrite <- Nat.add_0_r at 1. apply Nat.add_le_mono.
assert (1 <= S (lh/8)). rewrite Nat.le_succ_l. apply Nat.lt_0_succ.
apply Nat.mul_le_mono_l with (p := 8) in H9.
rewrite Nat.mul_1_r in H9. assumption. apply le_0_n.
assert (1 <= S (lh/8)). rewrite Nat.le_succ_l. apply Nat.lt_0_succ.
apply Nat.mul_le_mono_l with (p := 8) in H9.
rewrite Nat.mul_1_r in H9. assumption.
assert (nth_error (tm_step (3 + (n-3))) (S (lh/8) * 8 + 3)
= nth_error (tm_step (3 + (n-3))) (S (lh/8) * 8 + 4)).
rewrite Nat.add_comm. rewrite <- Nat.add_sub_swap. rewrite Nat.add_sub.
rewrite Nat.add_succ_r in H9. rewrite Nat.add_succ_r in H9.
symmetry in H9. rewrite Nat.add_succ_r in H9. rewrite Nat.add_succ_r in H9.
apply Nat.succ_inj in H9. apply Nat.succ_inj in H9.
rewrite Nat.mul_comm in H9. rewrite H9.
rewrite Nat.add_succ_r in H9. symmetry in H9. rewrite Nat.add_succ_r in H9.
apply Nat.succ_inj in H9. rewrite <- H9. rewrite H. unfold lh. unfold hd'.
rewrite nth_error_app2. symmetry. rewrite nth_error_app2. rewrite Y''.
rewrite app_length.
replace (length (b3::b5::b7::hd)) with (S (S (S (length hd)))).
rewrite Nat.add_succ_comm. rewrite Nat.add_succ_comm.
rewrite Nat.add_succ_comm.
rewrite Nat.add_comm. rewrite <- Nat.add_sub_assoc.
rewrite Nat.add_sub_swap. rewrite Nat.sub_diag. symmetry.
rewrite Nat.add_comm. rewrite <- Nat.add_sub_assoc.
rewrite Nat.add_sub_swap. rewrite Nat.sub_diag. reflexivity.
apply Nat.le_refl. rewrite <- Nat.add_0_r at 1.
rewrite <- Nat.add_le_mono_l. apply le_0_n. apply Nat.le_refl.
rewrite <- Nat.add_0_r at 1.
rewrite <- Nat.add_le_mono_l. apply le_0_n. reflexivity.
rewrite Y''. rewrite app_length. simpl. rewrite <- Nat.add_succ_r.
rewrite <- Nat.add_succ_r. rewrite <- Nat.add_succ_r.
rewrite <- Nat.add_0_r at 1. rewrite <- Nat.add_assoc.
rewrite <- Nat.add_le_mono_l. apply le_0_n.
rewrite Y''. rewrite app_length. simpl. rewrite <- Nat.add_succ_r.
rewrite <- Nat.add_succ_r. rewrite <- Nat.add_succ_r.
rewrite <- Nat.add_0_r at 1. rewrite <- Nat.add_assoc.
rewrite <- Nat.add_le_mono_l. apply le_0_n.
apply Nat.lt_le_incl. assumption.
rewrite <- tm_step_repeating_patterns in H10. inversion H10.
simpl. rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
simpl. rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
rewrite Nat.mul_lt_mono_pos_l with (p := 8).
rewrite Nat.add_lt_mono_r with (p := 6). rewrite <- H9.
replace (8) with (2^3) at 2. rewrite <- Nat.pow_add_r.
rewrite Nat.add_sub_assoc. rewrite Nat.add_sub_swap.
rewrite Nat.sub_diag. rewrite Nat.add_0_l.
rewrite <- tm_size_power2. rewrite H'. unfold lh.
rewrite app_length. rewrite app_length. rewrite <- Nat.add_assoc.
rewrite <- Nat.add_assoc.
rewrite <- Nat.add_lt_mono_l. simpl.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. rewrite Nat.add_succ_r.
rewrite <- Nat.succ_lt_mono. rewrite Nat.add_succ_r.
apply Nat.lt_0_succ. apply Nat.le_refl.
apply Nat.lt_le_incl. assumption. reflexivity. apply Nat.lt_0_succ.
(* on arrive à la suite du cas b8 = b9 avec cette fois b9 = b1
et non plus b9 = b0 *)
assert (b9 = b1). destruct b9; destruct b1; destruct b0.
reflexivity. reflexivity. contradiction n6. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
contradiction n6. reflexivity. reflexivity. reflexivity.
rewrite H8 in H.
(* le premier nouveau sous cas est lh mod 4 = 2 en H1
FTFT TFTF FTFT TFTF (µ de FF TT FF TT) pourquoi impossible ?
c'est un carré ???
c'est un palindrome fait avec un carré de palindrome ?
morphisme de FFTTFFTT sans doute impossible (testé)
*)
unfold hd' in H. destruct hd. inversion P.
rewrite app_removelast_last
with (l := (removelast (removelast (removelast (b3::b5::b7::b10::hd)))))
(d := false) in H.
pose (b11 := last (removelast (removelast
(removelast (b3 :: b5 :: b7 :: b10 :: hd)))) false).
fold b11 in H. rewrite <- app_assoc in H.
pose (hd'' := removelast (removelast (removelast
(removelast (b3 :: b5 :: b7 :: b10 :: hd))))).
fold hd'' in H.
(* proof that b11 <> b1 *)
assert ({b11=b1} + {~ b11=b1}). apply bool_dec. destruct H9. rewrite e1 in H.
assert (even (length hd'') = false).
replace ( hd'' ++ [b1] ++ [b1] ++ [b0] ++ [b1] ++
b1 :: b0 :: b1 :: b0 :: b0 :: b1 :: b0 :: b1 :: b1 :: b0 :: b1 :: tl)
with (hd'' ++ [b1;b1;b0] ++ [b1;b1;b0]
++ b1::b0::b0::b1::b0::b1::b1::b0::b1::tl) in H.
assert (odd (length [b1;b1;b0]) = true). reflexivity.
generalize H9. generalize H. apply tm_step_odd_prefix_square.
reflexivity. unfold hd'' in H9.
rewrite removelast_firstn_len in H9. rewrite Y'' in H9.
rewrite firstn_length_le in H9. simpl in H9.
replace (b3::b5::b7::b10::hd) with ([b3;b5;b7;b10] ++ hd) in Q.
rewrite app_length in Q. rewrite Nat.even_add in Q. rewrite H9 in Q.
inversion Q. reflexivity. rewrite Y''. apply Nat.le_pred_l.
(* proof ath b11 = b0 *)
assert (b11 = b0). destruct b11; destruct b1; destruct b0.
reflexivity. contradiction n7. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n7. reflexivity. reflexivity.
rewrite H9 in H.
(* on élargit tl (adding b12 in front of tl) *)
destruct tl.
assert (tm_step n = rev (tm_step n)
\/ tm_step n = map negb (rev (tm_step n))).
apply tm_step_rev. destruct H10; rewrite H in H10 at 2;
rewrite rev_app_distr in H10;
assert (odd 1 = true). reflexivity.
rewrite <- tm_step_pred with (n := n) (k := 0) in H11.
rewrite H10 in H11. simpl in H11. inversion H11. rewrite H13 in n1.
contradiction n1. reflexivity. simpl.
replace 2 with (2^1). rewrite <- Nat.pow_lt_mono_r_iff.
apply Nat.lt_succ_l in R. apply Nat.lt_succ_l in R. assumption.
apply Nat.lt_1_2. reflexivity.
reflexivity.
rewrite <- tm_step_pred with (n := n) (k := 0) in H11.
rewrite H10 in H11. simpl in H11. inversion H11.
destruct b0; destruct b1. contradiction n1. reflexivity.
inversion H13. inversion H13. contradiction n1. reflexivity. simpl.
replace 2 with (2^1). rewrite <- Nat.pow_lt_mono_r_iff.
apply Nat.lt_succ_l in R. apply Nat.lt_succ_l in R. assumption.
apply Nat.lt_1_2. reflexivity.
(* now we have added b12 in front of tl *)
(* proof that b12 <> b1 *)
assert ({b12=b1} + {~ b12=b1}). apply bool_dec. destruct H10. rewrite e1 in H.
assert (even (length (hd'' ++ [b0;b1;b0;b1;b1; b0; b1; b0; b0; b1])) = false).
replace ( hd'' ++ [b0] ++ [b1] ++ [b0] ++ [b1] ++ b1
:: b0 :: b1 :: b0 :: b0 :: b1 :: b0 :: b1 :: b1 :: b0 :: b1 :: b1 :: tl)
with ((hd'' ++ [b0;b1;b0;b1;b1; b0; b1; b0; b0; b1])
++ [ b0;b1;b1] ++ [b0;b1;b1] ++ tl) in H.
assert (odd (length [b0;b1;b1]) = true). reflexivity.
generalize H10. generalize H. apply tm_step_odd_prefix_square.
rewrite <- app_assoc. reflexivity. unfold hd'' in H10.
rewrite removelast_firstn_len in H10. rewrite Y'' in H10.
rewrite app_length in H10. rewrite firstn_length_le in H10. simpl in H10.
rewrite Nat.even_add in H10.
simpl in Q. rewrite Q in H10. inversion H10.
rewrite Y''. apply Nat.le_pred_l.
(* now we know that b12 <> b1 *)
(* proof that b12 = b0 *)
assert (b12 = b0). destruct b12; destruct b1; destruct b0.
reflexivity. contradiction n8. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n8. reflexivity. reflexivity.
rewrite H10 in H.
(* simplify notations *)
replace ( hd'' ++ [b0] ++ [b1] ++ [b0] ++ [b1] ++ b1
:: b0 :: b1 :: b0 :: b0 :: b1 :: b0 :: b1 :: b1 :: b0 :: b1 :: b0 :: tl)
with (hd'' ++ [b0;b1;b0;b1;b1;b0;b1;b0;b0;b1;b0;b1;b1;b0;b1;b0] ++ tl) in H.
pose (s := [b0;b1;b0;b1;b1;b0;b1;b0;b0;b1;b0;b1;b1;b0;b1;b0]). fold s in H.
assert (even (length hd'') = true). unfold hd''.
rewrite removelast_firstn_len. rewrite Y''.
replace (pred (length (b10::hd))) with (length hd).
rewrite firstn_length_le. simpl in Q. rewrite Q. reflexivity.
rewrite Y''. apply Nat.le_succ_diag_r. reflexivity.
(* destructuring n *)
destruct n. inversion H0. rewrite <- tm_step_lemma in H.
(* inverting tm_morphism in tm_step n *)
assert (hd'' = tm_morphism (firstn (Nat.div2 (length hd'')) (tm_step n))).
generalize H11. generalize H. apply tm_morphism_app2.
assert (s ++ tl = tm_morphism (skipn (Nat.div2 (length hd'')) (tm_step n))).
generalize H11. generalize H. apply tm_morphism_app3. symmetry in H13.
assert (even (length s) = true). unfold s. reflexivity.
assert (s = tm_morphism (firstn (Nat.div2 (length s))
(skipn (Nat.div2 (length hd'')) (tm_step n)))).
generalize H14. generalize H13. apply tm_morphism_app2.
assert (tl = tm_morphism (skipn (Nat.div2 (length s))
(skipn (Nat.div2 (length hd'')) (tm_step n)))).
generalize H14. generalize H13. apply tm_morphism_app3.
rewrite H12 in H. rewrite H15 in H. rewrite H16 in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_eq in H.
pose (h0 := firstn (Nat.div2 (length hd'')) (tm_step n)).
pose (s0 := firstn (Nat.div2 (length s))
(skipn (Nat.div2 (length hd'')) (tm_step n))).
pose (t0 := skipn (Nat.div2 (length s))
(skipn (Nat.div2 (length hd'')) (tm_step n))).
fold h0 in H. fold s0 in H. fold t0 in H.
(* fin de la preuve pour cette partie : morphisme impossible *)
assert (s0 = [b0;b0;b1;b1;b0;b0;b1;b1]). fold s0 in H15.
unfold s in H15. destruct s0. inversion H15.
destruct s0. inversion H15. destruct s0. inversion H15.
destruct s0. inversion H15. destruct s0; inversion H15.
destruct s0. inversion H15. destruct s0. inversion H15.
destruct s0. inversion H15. destruct s0; inversion H15.
inversion H15. reflexivity.
rewrite H17 in H.
(* à ce stade H est contradictoire *)
assert (even (length h0) = false).
replace (h0 ++ [b0; b0; b1; b1; b0; b0; b1; b1] ++ t0)
with (h0 ++ [b0] ++ [b0] ++ ([b1; b1; b0; b0; b1; b1] ++ t0)) in H.
assert (odd (length [b0]) = true). reflexivity. generalize H18.
generalize H. apply tm_step_odd_prefix_square. reflexivity.
replace (h0 ++ [b0; b0; b1; b1; b0; b0; b1; b1] ++ t0)
with (h0 ++ [b0;b0;b1;b1] ++ [b0;b0;b1;b1] ++ t0) in H.
assert (even (length h0) = true).
assert (even (length (h0 ++ [b0;b0;b1;b1])) = true).
assert (0 < length [b0;b0;b1;b1]). simpl. apply Nat.lt_0_succ.
generalize H19. generalize H. apply tm_step_square_pos.
rewrite app_length in H19. rewrite Nat.even_add in H19.
rewrite H18 in H19. inversion H19. rewrite H18 in H19.
inversion H19. reflexivity. reflexivity.
rewrite <- length_zero_iff_nil. rewrite Y''. easy.
(* fin de la preuve, on a b8 <> b9 *)
right. rewrite U. simpl. injection. inversion H7. rewrite H9 in n6.
contradiction n6. reflexivity.
rewrite removelast_firstn_len. rewrite removelast_firstn_len. simpl.
rewrite <- length_zero_iff_nil. easy.
rewrite <- length_zero_iff_nil.
rewrite removelast_firstn_len. easy.
apply Nat.lt_1_2. easy.
(* désormais on a b <> b1 ; il suffit de montrer que b = b0 pour
arriver à un bloc de 2 contenant deux termes identiques *)
assert (b = b0). destruct b; destruct b1; destruct b0.
reflexivity. contradiction n2. reflexivity. reflexivity.
contradiction n1. reflexivity. contradiction n1. reflexivity.
reflexivity. contradiction n2. reflexivity. reflexivity.
rewrite H1 in H.
replace (
(b3 :: hd) ++ b0 :: b0 :: b1 :: b2 :: b2 :: b1 :: b0 :: b0 :: b4 :: tl)
with (
(b3 :: hd) ++ [b0] ++ [b0]
++ b1 :: b2 :: b2 :: b1 :: b0 :: b0 :: b4 :: tl) in H.
assert (even (length (b3 :: hd)) = false).
assert (odd (length [b0]) = true). reflexivity. generalize H2.
generalize H. apply tm_step_odd_prefix_square. rewrite H2 in Q.
inversion Q. reflexivity.
(* fin de la destructuration de a, désormais trop grand
cf. hypothèse I *)
simpl in I. apply eq_add_S in I. apply eq_add_S in I.
apply eq_add_S in I. apply eq_add_S in I.
symmetry in I. apply O_S in I. contradiction I.
Qed.
Theorem tm_step_palindromic_length_12 :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ rev a ++ tl
-> 6 < length a
-> length (hd ++ a) mod 4 = 0.
Proof.
intros n hd a tl. intros H I.
assert (J: even (length (hd ++ a)) = true).
assert (0 < length a).
apply Nat.lt_succ_l in I. apply Nat.lt_succ_l in I.
apply Nat.lt_succ_l in I. apply Nat.lt_succ_l in I.
apply Nat.lt_succ_l in I. apply Nat.lt_succ_l in I.
assumption. generalize H0. generalize H.
apply tm_step_palindromic_even_center.
apply even_mod4 in J. destruct J. assumption.
rewrite <- firstn_skipn with (l := a) (n := length a - 4) in H.
rewrite rev_app_distr in H. rewrite <- app_assoc in H.
rewrite app_assoc in H.
assert (length (skipn (length a - 4) a) = 4). rewrite skipn_length.
replace (length a) with ((length a - 4) + 4) at 1. rewrite Nat.add_comm.
rewrite Nat.add_sub. reflexivity. rewrite Nat.add_comm.
rewrite Nat.add_sub_assoc. rewrite Nat.add_sub_swap. reflexivity.
apply Nat.le_refl. apply Nat.lt_le_incl.
apply Nat.lt_succ_l in I. apply Nat.lt_succ_l in I.
assumption.
pose (hd' := hd ++ firstn (length a - 4) a). fold hd' in H.
pose (a' := skipn (length a - 4) a). fold a' in H.
rewrite <- app_assoc in H.
pose (tl' := rev (firstn (length a - 4) a) ++ tl). fold tl' in H.
assert (K: length (hd' ++ a') mod 4 = 0
\/ nth_error hd' (length hd' - 3) <> nth_error tl' 2).
fold a' in H1. generalize H1. generalize H.
apply tm_step_palindromic_length_8.
destruct K.
unfold hd' in H2. unfold a' in H2. rewrite <- app_assoc in H2.
rewrite firstn_skipn in H2. assumption.
rewrite <- firstn_skipn with (l := a) (n := length a - 4) in I.
rewrite app_length in I. rewrite H1 in I. rewrite Nat.add_comm in I.
apply Nat.succ_lt_mono in I. apply Nat.succ_lt_mono in I.
apply Nat.succ_lt_mono in I. apply Nat.succ_lt_mono in I.
destruct (firstn (length a - 4) a). inversion I. destruct l.
apply Nat.succ_lt_mono in I. inversion I. destruct l.
apply Nat.succ_lt_mono in I. apply Nat.succ_lt_mono in I.
inversion I.
unfold hd' in H2. unfold tl' in H2.
rewrite nth_error_app2 in H2. rewrite nth_error_app1 in H2.
rewrite app_length in H2. rewrite Nat.add_comm in H2.
rewrite Nat.add_sub_swap in H2. rewrite Nat.add_sub in H2.
assert (K: forall m (u : list bool),
m < length u -> nth_error u m = nth_error (rev u) (length u - S m)).
intros m u. intro V.
assert (V' := V). apply nth_error_nth' with (d := false) in V'.
assert (exists l1 l2, u = l1 ++ (nth m u false)::l2 /\ length l1 = m).
apply nth_error_split. assumption. destruct H3. destruct H3. destruct H3.
rewrite V'.
assert (length u = length u). reflexivity. rewrite H3 in H5 at 2.
rewrite app_length in H5. rewrite H4 in H5.
rewrite H3 at 2. rewrite rev_app_distr. rewrite nth_error_app1.
replace (nth m u false :: x0) with ([nth m u false] ++ x0).
rewrite rev_app_distr. rewrite H5.
rewrite Nat.add_comm. replace (S m) with (m + 1).
rewrite Nat.sub_add_distr. rewrite <- Nat.add_sub_assoc.
rewrite Nat.sub_diag. rewrite Nat.add_0_r.
rewrite nth_error_app2. rewrite rev_length. simpl.
rewrite Nat.sub_0_r. rewrite Nat.sub_diag. reflexivity.
rewrite rev_length. simpl. rewrite Nat.sub_0_r. apply Nat.le_refl.
apply Nat.le_refl. rewrite Nat.add_1_r. reflexivity. reflexivity.
rewrite rev_length. rewrite Nat.add_lt_mono_r with (p := m).
replace (S m) with (m + 1). rewrite <- Nat.add_sub_swap.
rewrite Nat.sub_add_distr. rewrite <- Nat.add_sub_assoc.
rewrite Nat.sub_diag. rewrite Nat.add_0_r. rewrite Nat.add_comm.
rewrite <- H5. apply Nat.sub_lt. rewrite H5. simpl.
rewrite Nat.add_succ_r. apply le_n_S. apply Nat.le_0_l.
apply Nat.lt_0_1. apply Nat.le_refl.
rewrite Nat.add_succ_r. rewrite Nat.add_0_r. rewrite Nat.le_succ_l.
assumption. apply Nat.add_1_r.
rewrite K with (u := rev (b::b0::b1::l)) in H2.
rewrite rev_involutive in H2. rewrite rev_length in H2.
contradiction H2. reflexivity.
rewrite rev_length. simpl. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
simpl. apply le_n_S. apply le_n_S. apply le_n_S.
apply Nat.le_0_l.
rewrite rev_length. simpl. rewrite <- Nat.succ_lt_mono.
rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
rewrite app_length. simpl.
replace (S (S (S (length l)))) with (length l + 3).
rewrite <- Nat.add_sub_assoc. rewrite <- Nat.add_sub_assoc.
rewrite Nat.sub_diag. rewrite Nat.add_0_r.
apply Nat.le_add_r. apply Nat.le_refl.
apply Nat.le_add_l. rewrite Nat.add_comm. simpl. reflexivity.
Qed.
Theorem tm_step_palindromic_length_12_prefix :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> length a > 6
-> length a mod 4 = 0 <-> length hd mod 4 = 0.
Proof.
intros n hd a tl. intros H I. split; intro J;
apply tm_step_palindromic_length_12 with (n := n) (hd := hd) (tl := tl) in I.
rewrite app_length in I.
rewrite <- Nat.add_mod_idemp_r in I. rewrite J in I. rewrite Nat.add_0_r in I.
assumption. easy. assumption.
rewrite app_length in I.
rewrite <- Nat.add_mod_idemp_l in I. rewrite J in I. rewrite Nat.add_0_l in I.
assumption. easy. assumption.
Qed.
Lemma tm_step_palindromic_even_morphism1 :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 0 < length a
-> even (length a) = true
-> tm_morphism (tm_step (pred n)) =
tm_morphism
(firstn (Nat.div2 (length hd)) (tm_step (pred n)) ++
firstn (Nat.div2 (length a))
(skipn (Nat.div2 (length hd)) (tm_step (pred n))) ++
map negb
(rev
(firstn (Nat.div2 (length a))
(skipn (Nat.div2 (length hd)) (tm_step (pred n))))) ++
skipn (Nat.div2 (length hd) + length a) (tm_step (pred n))).
Proof.
intros n hd a tl. intros H Z J.
(* proof that n <> 0 *)
destruct n. assert (length (tm_step 0) <= length (tm_step 0)).
apply Nat.le_refl.
rewrite H in H0 at 1. rewrite app_length in H0. rewrite app_length in H0.
rewrite Nat.add_comm in H0. rewrite <- Nat.add_assoc in H0. simpl in H0.
apply Nat.le_add_le_sub_r in H0. rewrite app_length in H0.
rewrite rev_length in H0. rewrite <- Nat.add_assoc in H0.
assert (K: 1 <= length a + (length tl + length hd)).
rewrite Nat.le_succ_l. apply Nat.lt_lt_add_r. assumption.
rewrite <- Nat.sub_0_le in K. rewrite K in H0. apply Nat.le_0_r in H0.
rewrite H0 in Z. inversion Z.
assert (even (length (hd ++ a)) = true). generalize Z. generalize H.
apply tm_step_palindromic_even_center.
assert (I: even (length hd) = true). rewrite app_length in H0.
rewrite Nat.even_add in H0. rewrite J in H0.
destruct (even (length hd)). reflexivity. inversion H0.
assert (K: even (length (rev a)) = true). rewrite rev_length. assumption.
rewrite app_assoc in H. rewrite <- tm_step_lemma in H.
assert (hd ++ a = tm_morphism (firstn (Nat.div2 (length (hd ++ a)))
(tm_step n))).
generalize H0. generalize H. apply tm_morphism_app2.
rewrite <- app_assoc in H. symmetry in H1.
assert (even (length (hd ++ a ++ (rev a))) = true).
rewrite app_length. rewrite Nat.even_add. rewrite I.
rewrite app_length. rewrite Nat.even_add. rewrite J. rewrite K.
reflexivity.
assert (tl = tm_morphism (skipn (Nat.div2 (length (hd ++ a ++ (rev a))))
(tm_step n))).
replace (hd ++ a ++ (rev a) ++ tl) with ((hd ++ a ++ (rev a)) ++ tl) in H.
generalize H2. generalize H. apply tm_morphism_app3.
rewrite <- app_assoc. rewrite <- app_assoc. reflexivity.
assert (hd = tm_morphism (firstn (Nat.div2 (length hd)) (tm_step n))).
generalize I. generalize H. apply tm_morphism_app2.
assert (a = tm_morphism (skipn (Nat.div2 (length hd))
(firstn (Nat.div2 (length (hd ++ a))) (tm_step n)))).
generalize I. generalize H1. apply tm_morphism_app3.
rewrite skipn_firstn_comm in H5. rewrite app_length in H5.
replace (Nat.div2 (length hd + length a))
with ((length hd) / 2 + Nat.div2 (length a)) in H5.
rewrite <- Nat.div2_div in H5. rewrite Nat.add_sub_swap in H5.
rewrite Nat.sub_diag in H5. rewrite Nat.add_0_l in H5.
rewrite H4 in H. rewrite H5 in H. rewrite H3 in H.
rewrite tm_morphism_rev in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite tm_step_lemma in H.
rewrite app_length in H. rewrite app_length in H. rewrite rev_length in H.
replace (length a + length a) with ((length a)*2) in H.
replace (Nat.div2 (length hd + length a * 2))
with ((length hd + length a * 2) / 2) in H.
rewrite Nat.div_add in H. rewrite <- Nat.div2_div in H.
assumption. easy.
rewrite Nat.div2_div. reflexivity. rewrite Nat.mul_comm. simpl.
rewrite Nat.add_0_r. reflexivity.
apply Nat.le_refl.
rewrite <- Nat.div_add. rewrite <- Nat.div2_div.
rewrite Nat.mul_comm.
rewrite Nat.div2_odd with (a := length a) at 2.
rewrite <- Nat.negb_even. rewrite J. simpl.
rewrite Nat.add_0_r. rewrite Nat.add_0_r. reflexivity. easy.
Qed.
Lemma tm_step_palindromic_even_morphism2 :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> length a > 6
-> (length a) mod 4 = 0
-> 11 = 42.
Proof.
intros n hd a tl. intros H W J0.
assert (Z: 0 < length a).
apply Nat.lt_succ_l in W. apply Nat.lt_succ_l in W. apply Nat.lt_succ_l in W.
apply Nat.lt_succ_l in W. apply Nat.lt_succ_l in W. apply Nat.lt_succ_l in W.
assumption.
assert (V: 1 < n). assert (length (tm_step n) <= length (tm_step n)).
apply Nat.le_refl. rewrite H in H0 at 1.
rewrite app_length in H0. rewrite app_length in H0.
rewrite Nat.add_comm in H0. rewrite <- Nat.add_assoc in H0.
rewrite <- Nat.add_0_r in H0. apply Nat.le_le_add_le in H0.
rewrite tm_size_power2 in H0. destruct n. destruct a.
inversion W. destruct a. inversion W. inversion H2.
destruct a. inversion W. inversion H2. inversion H4.
inversion H0. inversion H2. destruct a. inversion W.
destruct a. inversion W. inversion H2. destruct a. inversion W.
inversion H2. inversion H4. destruct n. inversion H0. inversion H2.
inversion H4. rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ.
apply le_0_n. destruct n. inversion V.
assert (J1: length hd mod 4 = 0). generalize J0. generalize W.
generalize H. apply tm_step_palindromic_length_12_prefix.
assert (EVEN: forall m, m mod 4 = 0 -> even m = true).
intro m. intro U. rewrite <- Nat.div_exact in U.
rewrite U. rewrite Nat.even_mul. reflexivity. easy.
assert (J: even (length a) = true).
apply EVEN in J0. assumption.
assert (even (length (hd ++ a)) = true). generalize Z. generalize H.
apply tm_step_palindromic_even_center.
assert (I: even (length hd) = true). rewrite app_length in H0.
rewrite Nat.even_add in H0. rewrite J in H0.
destruct (even (length hd)). reflexivity. inversion H0.
assert (K: even (length (rev a)) = true). rewrite rev_length. assumption.
rewrite app_assoc in H. rewrite <- tm_step_lemma in H.
assert (hd ++ a = tm_morphism (firstn (Nat.div2 (length (hd ++ a)))
(tm_step n))).
generalize H0. generalize H. apply tm_morphism_app2.
rewrite <- app_assoc in H. symmetry in H1.
assert (even (length (hd ++ a ++ (rev a))) = true).
rewrite app_length. rewrite Nat.even_add. rewrite I.
rewrite app_length. rewrite Nat.even_add. rewrite J. rewrite K.
reflexivity.
assert (tl = tm_morphism (skipn (Nat.div2 (length (hd ++ a ++ (rev a))))
(tm_step n))).
replace (hd ++ a ++ (rev a) ++ tl) with ((hd ++ a ++ (rev a)) ++ tl) in H.
generalize H2. generalize H. apply tm_morphism_app3.
rewrite <- app_assoc. rewrite <- app_assoc. reflexivity.
assert (hd = tm_morphism (firstn (Nat.div2 (length hd)) (tm_step n))).
generalize I. generalize H. apply tm_morphism_app2.
assert (a = tm_morphism (skipn (Nat.div2 (length hd))
(firstn (Nat.div2 (length (hd ++ a))) (tm_step n)))).
generalize I. generalize H1. apply tm_morphism_app3.
rewrite skipn_firstn_comm in H5. rewrite app_length in H5.
replace (Nat.div2 (length hd + length a))
with ((length hd) / 2 + Nat.div2 (length a)) in H5.
rewrite <- Nat.div2_div in H5. rewrite Nat.add_sub_swap in H5.
rewrite Nat.sub_diag in H5. rewrite Nat.add_0_l in H5.
rewrite H4 in H. rewrite H5 in H. rewrite H3 in H.
rewrite tm_morphism_rev in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_eq in H.
rewrite app_length in H. rewrite app_length in H. rewrite rev_length in H.
replace (length a + length a) with ((length a)*2) in H.
replace (Nat.div2 (length hd + length a * 2))
with ((length hd + length a * 2) / 2) in H.
rewrite Nat.div_add in H. rewrite <- Nat.div2_div in H.
pose (hd' := firstn (Nat.div2 (length hd)) (tm_step n)).
pose (a' := firstn (Nat.div2 (length a)) (skipn (Nat.div2 (length hd))
(tm_step n))).
pose (tl' := skipn (Nat.div2 (length hd) + length a) (tm_step n)).
fold hd' in H. fold a' in H. fold tl' in H.
assert (length hd' = Nat.div2 (length hd)). unfold hd'. rewrite H4.
rewrite tm_morphism_length_half. rewrite firstn_length. rewrite firstn_length.
replace (min (Nat.div2 (length hd)) (length (tm_step n)))
with (min (length (tm_step n)) (Nat.div2 (length hd))).
rewrite Nat.min_comm. rewrite Nat.min_assoc. rewrite Nat.min_id.
reflexivity. rewrite Nat.min_comm. reflexivity.
assert (length a' = Nat.div2 (length a)). unfold a'. rewrite H5.
rewrite tm_morphism_length_half. rewrite firstn_length. rewrite firstn_length.
rewrite Nat.min_comm. rewrite <- H6.
replace
(min (Nat.div2 (length a)) (length (skipn (length hd') (tm_step n))))
with
(min (length (skipn (length hd') (tm_step n))) (Nat.div2 (length a))).
rewrite Nat.min_assoc. rewrite Nat.min_id. reflexivity.
rewrite Nat.min_comm. reflexivity.
assert (length tl' = Nat.div2 (length tl)). unfold tl'. rewrite H3.
rewrite tm_morphism_length_half. rewrite app_length.
symmetry. rewrite Nat.div2_div.
rewrite app_length. rewrite rev_length.
replace (length a + length a) with (length a * 2).
rewrite Nat.div_add. rewrite <- Nat.div2_div. reflexivity. easy.
rewrite Nat.mul_comm. simpl. rewrite Nat.add_0_r. reflexivity.
assert (I': even (length hd') = true). rewrite H6.
rewrite <- Nat.div_exact in J1. rewrite J1.
replace 4 with (2*2). rewrite <- Nat.mul_assoc. rewrite Nat.div2_double.
rewrite Nat.even_mul. reflexivity. reflexivity. easy.
assert (J': even (length a') = true). rewrite H7.
rewrite <- Nat.div_exact in J0. rewrite J0.
replace 4 with (2*2). rewrite <- Nat.mul_assoc. rewrite Nat.div2_double.
rewrite Nat.even_mul. reflexivity. reflexivity. easy.
assert (K': even (length (map negb (rev a'))) = true).
rewrite map_length. rewrite rev_length. assumption.
assert (H0': even (length (hd' ++ a')) = true).
rewrite app_length. rewrite Nat.even_add.
rewrite I'. rewrite J'. reflexivity.
destruct n. inversion V. inversion H10.
rewrite app_assoc in H. rewrite <- tm_step_lemma in H.
assert (H1': hd' ++ a' = tm_morphism (firstn (Nat.div2 (length (hd' ++ a')))
(tm_step n))).
generalize H0'. generalize H. apply tm_morphism_app2.
rewrite <- app_assoc in H. symmetry in H1'.
assert (H2': even (length (hd' ++ a' ++ (map negb (rev a')))) = true).
rewrite app_length. rewrite Nat.even_add. rewrite I'.
rewrite app_length. rewrite Nat.even_add. rewrite J'. rewrite K'.
reflexivity.
assert (H3': tl' = tm_morphism (skipn
(Nat.div2 (length (hd' ++ a' ++ (map negb (rev a')))))
(tm_step n))).
replace (hd' ++ a' ++ (map negb (rev a')) ++ tl')
with ((hd' ++ a' ++ (map negb (rev a'))) ++ tl') in H.
generalize H2'. generalize H. apply tm_morphism_app3.
rewrite <- app_assoc. rewrite <- app_assoc. reflexivity.
assert (H4': hd' = tm_morphism (firstn (Nat.div2 (length hd')) (tm_step n))).
generalize I'. generalize H. apply tm_morphism_app2.
assert (H5': a' = tm_morphism (skipn (Nat.div2 (length hd'))
(firstn (Nat.div2 (length (hd' ++ a'))) (tm_step n)))).
generalize I'. generalize H1'. apply tm_morphism_app3.
rewrite skipn_firstn_comm in H5'. rewrite app_length in H5'.
replace (Nat.div2 (length hd' + length a'))
with ((length hd') / 2 + Nat.div2 (length a')) in H5'.
rewrite <- Nat.div2_div in H5'. rewrite Nat.add_sub_swap in H5'.
rewrite Nat.sub_diag in H5'. rewrite Nat.add_0_l in H5'.
rewrite H4' in H. rewrite H5' in H. rewrite H3' in H.
rewrite tm_morphism_rev2 in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_eq in H.
rewrite app_length in H. rewrite app_length in H.
rewrite map_length in H. rewrite rev_length in H.
replace (length a' + length a') with ((length a')*2) in H.
replace (Nat.div2 (length hd' + length a' * 2))
with ((length hd' + length a' * 2) / 2) in H.
rewrite Nat.div_add in H. rewrite <- Nat.div2_div in H.
pose (hd'' := firstn (Nat.div2 (length hd')) (tm_step n)).
pose (a'' := firstn (Nat.div2 (length a')) (skipn (Nat.div2 (length hd'))
(tm_step n))).
pose (tl'' := skipn (Nat.div2 (length hd') + length a') (tm_step n)).
fold hd'' in H. fold a'' in H. fold tl'' in H.
assert (length hd'' = Nat.div2 (length hd')). unfold hd''. rewrite H4'.
rewrite tm_morphism_length_half. rewrite firstn_length. rewrite firstn_length.
replace (min (Nat.div2 (length hd')) (length (tm_step n)))
with (min (length (tm_step n)) (Nat.div2 (length hd'))).
rewrite Nat.min_comm. rewrite Nat.min_assoc. rewrite Nat.min_id.
reflexivity. rewrite Nat.min_comm. reflexivity.
assert (length a'' = Nat.div2 (length a')). unfold a''. rewrite H5'.
rewrite tm_morphism_length_half. rewrite firstn_length. rewrite firstn_length.
rewrite Nat.min_comm. rewrite <- H9.
replace
(min (Nat.div2 (length a')) (length (skipn (length hd'') (tm_step n))))
with
(min (length (skipn (length hd'') (tm_step n))) (Nat.div2 (length a'))).
rewrite Nat.min_assoc. rewrite Nat.min_id. reflexivity.
rewrite Nat.min_comm. reflexivity.
assert (length tl'' = Nat.div2 (length tl')). unfold tl''. rewrite H3'.
rewrite tm_morphism_length_half. rewrite app_length.
symmetry. rewrite Nat.div2_div.
rewrite app_length. rewrite map_length. rewrite rev_length.
replace (length a' + length a') with (length a' * 2).
rewrite Nat.div_add. rewrite <- Nat.div2_div. reflexivity. easy.
rewrite Nat.mul_comm. simpl. rewrite Nat.add_0_r. reflexivity.
Admitted.
Lemma tm_step_proper_palindromic_center :
forall (m n k i: nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> length a = 2 ^ S (Nat.double m)
-> length (hd ++ a) = S (Nat.double k) * 2 ^ i
-> last hd false <> List.hd false tl
-> i = 2 ^ S (Nat.double m).
Proof.
intro m. induction m.
- intros n k i hd a tl. intros H I J K.
destruct a. inversion I. destruct a. inversion I. destruct a.
(* JUNK
Lemma xxx : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ map negb (rev a) ++ tl
-> length a = 4
-> even (length hd) = true.
Proof.
intros n hd a tl. intros H I.
destruct a. inversion I. destruct a. inversion I.
destruct a. inversion I. destruct a. inversion I.
destruct a.
replace [b;b0;b1;b2] with ([b] ++ [b0] ++ [b1] ++ [b2]) in H at 1.
rewrite <- app_assoc in H. rewrite <- app_assoc in H.
rewrite <- app_assoc in H.
replace (map negb (rev [b; b0; b1; b2]))
with ([negb b2] ++ [negb b1] ++ [negb b0] ++ [negb b]) in H.
rewrite <- app_assoc in H. rewrite <- app_assoc in H.
rewrite <- app_assoc in H.
assert (0 < length [b]). apply Nat.lt_0_1.
assert (0 < length [b0]). apply Nat.lt_0_1.
assert (0 < length [b1]). apply Nat.lt_0_1.
assert (0 < length [b2]). apply Nat.lt_0_1.
assert (J: {even (length hd) = true}
+ {~ even (length hd) = true}). apply bool_dec.
destruct b; destruct b0; destruct b1; destruct b2.
- assert ([true]<>[true]). generalize H0.
generalize H. apply tm_step_cubefree.
contradiction H4. reflexivity.
- assert ([true]<>[true]). generalize H0.
generalize H. apply tm_step_cubefree.
contradiction H4. reflexivity.
- assert([true] ++ [false] <> [true] ++ [false]). rewrite app_assoc in H.
replace ( [true] ++ [false] ++ [true] ++ [negb true]
++ [negb false] ++ [negb true] ++ [negb true] ++ tl)
with ( ([true] ++ [false]) ++ ([true] ++ [negb true])
++ ([negb false] ++ [negb true]) ++ [negb true] ++ tl) in H.
assert (0 < length ([true]++[false])). apply Nat.lt_0_2.
generalize H4. generalize H. apply tm_step_cubefree.
reflexivity. contradiction H4. reflexivity.
- assert (even (length (hd ++ [true] ++ [true] ++ [false] ++ [false])) = true).
replace ( [true] ++ [true] ++ [false] ++ [false] ++ [negb false]
++ [negb false] ++ [negb true] ++ [negb true] ++ tl)
with ( ([true] ++ [true] ++ [false] ++ [false]) ++ ([negb false]
++ [negb false] ++ [negb true] ++ [negb true]) ++ tl) in H.
assert (0 < length ([true] ++ [true] ++ [false] ++ [false])).
apply Nat.lt_0_succ. generalize H4. generalize H. apply tm_step_square_pos.
rewrite <- app_assoc. rewrite <- app_assoc. rewrite <- app_assoc.
reflexivity.
rewrite app_length in H4. simpl in H4.
rewrite Nat.add_succ_r in H4. rewrite Nat.add_succ_r in H4.
rewrite Nat.add_succ_r in H4. rewrite Nat.add_succ_r in H4.
rewrite Nat.add_0_r in H4.
rewrite Nat.even_succ in H4. rewrite Nat.odd_succ in H4.
rewrite Nat.even_succ in H4. rewrite Nat.odd_succ in H4.
rewrite H4. reflexivity.
- destruct J. assumption.
rewrite not_true_iff_false in n0.
assert (M: (length hd) mod 4 = 1 \/ (length hd) mod 4 = 3).
apply odd_mod4. rewrite <- Nat.negb_even. rewrite n0. reflexivity.
destruct M.
+ replace ( [true] ++ [false] ++ [true] ++ [true]
++ [negb true] ++ [negb true] ++ [negb false] ++ [negb true] ++ tl )
with ( ([true] ++ [false] ++ [true] ++ [true])
++ [negb true] ++ [negb true] ++ [negb false] ++ [negb true] ++ tl )
in H.
assert (exists (x:bool), firstn 2 [true;false;true;true] = [x;x]).
generalize H4. generalize I. generalize H.
apply tm_step_factor4_1mod4.
destruct H5. inversion H5. inversion H8.
rewrite <- app_assoc. rewrite <- app_assoc. rewrite <- app_assoc.
reflexivity.
+ replace ( hd ++ [true] ++ [false] ++ [true] ++ [true]
++ [negb true] ++ [negb true] ++ [negb false] ++ [negb true] ++ tl )
with ( (hd ++ [true] ++ [false] ++ [true] ++ [true])
++ ([negb true] ++ [negb true] ++ [negb false] ++ [negb true]) ++ tl )
in H.
assert (exists (x:bool), skipn 2 [false;false;true;false] = [x;x]).
assert (length (hd ++ [true]++[false]++[true]++[true]) mod 4 = 3).
rewrite app_length. rewrite Nat.add_mod. rewrite H4. reflexivity.
easy. generalize H5.
assert (length [false;false;true;false]=4). reflexivity.
generalize H6. generalize H. apply tm_step_factor4_3mod4.
destruct H5. inversion H5. inversion H8.
rewrite <- app_assoc. reflexivity.
- assert([true] ++ [false] <> [true] ++ [false]).
replace ( [true] ++ [false] ++ [true] ++ [false] ++ [negb false]
++ [negb true] ++ [negb false] ++ [negb true] ++ tl)
with ( ([true] ++ [false]) ++ ([true] ++ [false])
++ ([negb false] ++ [negb true])
++ [negb false] ++ [negb true] ++ tl) in H.
assert (0 < length ([true]++[false])). apply Nat.lt_0_2.
generalize H4. generalize H. apply tm_step_cubefree.
reflexivity. contradiction H4. reflexivity.
- destruct J. assumption. rewrite not_true_iff_false in n0.
*)
(* TODO: bloqué
Lemma tm_step_proper_palindrome_center :
forall (m n k : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> length a = 2^(Nat.double m) (* palindrome non propre *)
-> skipn (length hd - length a) hd = rev (firstn (length a) tl).
Proof.
induction m; intros n k hd a tl; intros H I.
- simpl in I. destruct a. inversion I. destruct a.
(* proof that hd is not nil *)
destruct hd. assert (odd 0 = true).
assert (nth_error (tm_step n) (S (2*0) * 2^0)
= nth_error (tm_step n) (pred (S (2*0) * 2^0))).
rewrite H. reflexivity. generalize H0.
assert (S (2*0) * 2^0 < 2^n). destruct n. inversion H.
rewrite Nat.mul_0_r. rewrite Nat.mul_1_l.
apply Nat.pow_lt_mono_r. apply Nat.lt_1_2. apply Nat.lt_0_succ.
generalize H1. apply tm_step_pred. inversion H0.
(* proof that tl is not nil *)
destruct tl. destruct n.
assert (tm_step 0 = rev (tm_step 0)). reflexivity.
rewrite H in H0 at 2. rewrite rev_app_distr in H0.
simpl in H0. inversion H0. rewrite <- tm_step_lemma in H.
assert (rev (tm_morphism (tm_step n)) = rev (tm_morphism (tm_step n))).
reflexivity. rewrite H in H0 at 2. rewrite tm_morphism_rev in H0.
rewrite rev_app_distr in H0. simpl in H0.
destruct (map negb (rev (tm_step n))). inversion H0. simpl in H0.
inversion H0. apply no_fixpoint_negb in H3. contradiction H3.
(* proof that b <> b1 *)
assert (J: {b=b1} + {~ b=b1}). apply bool_dec. destruct J.
rewrite e in H.
replace (rev [b1]) with ([b1]) in H.
replace (b1::tl) with ([b1] ++ tl) in H.
assert ([b1] <> [b1]). assert (0 < length [b1]). apply Nat.lt_0_1.
generalize H0. generalize H. apply tm_step_cubefree.
contradiction H0. reflexivity. reflexivity. reflexivity.
(* proof that b <> last (b0::hd) false *)
assert (J: {b=last (b0::hd) false} + {~ b=last (b0::hd) false}).
apply bool_dec. destruct J.
rewrite app_removelast_last with (l := b0::hd) (d := false) in H.
rewrite <- e in H. rewrite <- app_assoc in H.
replace (rev [b]) with ([b]) in H.
assert ([b] <> [b]). assert (0 < length [b]). apply Nat.lt_0_1.
generalize H0. generalize H. apply tm_step_cubefree.
contradiction H0. reflexivity. reflexivity. easy.
(* proof that b1 = last (b0 :: hd) false *)
assert (b1 = last (b0 :: hd) false).
destruct b; destruct b1; destruct (last (b0::hd) false).
reflexivity. contradiction n0. reflexivity.
contradiction n1. reflexivity. reflexivity.
reflexivity. contradiction n1. reflexivity.
contradiction n0. reflexivity. reflexivity.
rewrite H0.
rewrite <- rev_involutive at 1. rewrite <- firstn_rev.
rewrite app_removelast_last with (l := b0::hd) (d := false) at 1.
rewrite rev_app_distr. reflexivity.
easy. inversion I.
- assert (J: even (length (hd ++ a)) = true).
assert (0 < length a). rewrite I.
rewrite <- Nat.neq_0_lt_0. apply Nat.pow_nonzero. easy.
generalize H0. generalize H. apply tm_step_palindromic_even_center.
assert (H' := H).
(* proof that 0 < n *)
destruct n.
assert (length (tm_step 0) = length (tm_step 0)). reflexivity.
rewrite H in H0 at 2. rewrite app_length in H0.
rewrite app_length in H0. rewrite I in H0.
assert (1 < 2^Nat.double(S m)).
rewrite <- Nat.pow_0_r with (a := 2) at 1.
apply Nat.pow_lt_mono_r. apply Nat.lt_1_2.
rewrite Nat.double_S. apply Nat.lt_0_succ.
assert (0 <= length (rev a ++ tl)). apply le_0_n.
assert (1 < 2 ^ Nat.double (S m) + length (rev a ++ tl)).
rewrite <- Nat.add_0_r at 1. generalize H2. generalize H1.
apply Nat.add_lt_le_mono.
assert (0 <= length hd). apply le_0_n.
assert (1 < length (tm_step 0)). rewrite <- Nat.add_0_l at 1.
rewrite H0. generalize H3. generalize H4.
apply Nat.add_le_lt_mono.
simpl in H5. apply Nat.lt_irrefl in H5. contradiction H5.
rewrite <- tm_step_lemma in H.
assert (K: even (length a) = true). rewrite Nat.double_S in I.
rewrite Nat.pow_succ_r in I. rewrite I. rewrite Nat.even_mul.
reflexivity. apply le_0_n.
assert (L: even (length hd) = true).
rewrite app_length in J. rewrite Nat.even_add in J.
rewrite K in J. destruct (Nat.even (length hd)).
reflexivity. inversion J.
assert (M: hd = tm_morphism (firstn (Nat.div2 (length hd))
(tm_step n))).
generalize L. generalize H. apply tm_morphism_app2.
assert (N: a ++ rev a ++ tl
= tm_morphism (skipn (Nat.div2 (length hd)) (tm_step n))).
generalize L. generalize H. apply tm_morphism_app3.
symmetry in N.
assert (O: a = tm_morphism (firstn (Nat.div2 (length a))
(skipn (Nat.div2 (length hd)) (tm_step n)))).
generalize K. generalize N. apply tm_morphism_app2.
assert (P: rev a ++ tl = tm_morphism (skipn (Nat.div2 (length a))
(skipn (Nat.div2 (length hd)) (tm_step n)))).
generalize K. generalize N. apply tm_morphism_app3.
symmetry in P.
assert (even (length (rev a)) = true). rewrite rev_length. assumption.
assert (R: tl = tm_morphism (skipn (Nat.div2 (length (rev a)))
(skipn (Nat.div2 (length a))
(skipn (Nat.div2 (length hd)) (tm_step n))))).
generalize H0. generalize P. apply tm_morphism_app3.
rewrite M in H. rewrite O in H. rewrite R in H.
rewrite tm_morphism_rev in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_eq in H.
pose (hd' := firstn (Nat.div2 (length hd)) (tm_step n)).
pose (a' := firstn (Nat.div2 (length a))
(skipn (Nat.div2 (length hd)) (tm_step n))).
pose (tl' := skipn (Nat.div2 (length (rev a)))
(skipn (Nat.div2 (length a))
(skipn (Nat.div2 (length hd)) (tm_step n)))).
fold hd' in H. fold a' in H. fold tl' in H.
assert (I': length a' = 2^S (Nat.double m)). unfold a'.
rewrite firstn_length_le. rewrite I. rewrite Nat.double_S.
rewrite Nat.pow_succ_r. rewrite Nat.div2_double. reflexivity.
apply le_0_n. rewrite skipn_length.
rewrite Nat.mul_le_mono_pos_r with (p := 2).
rewrite Nat.mul_comm. rewrite <- Nat.add_0_r at 1.
replace 0 with (Nat.b2n (Nat.odd (length a))) at 2.
rewrite <- Nat.div2_odd. rewrite Nat.mul_sub_distr_r.
replace (length (tm_step n) * 2) with (length (tm_step (S n))).
replace (Nat.div2 (length hd) * 2) with (length hd).
rewrite H'. rewrite app_length. rewrite Nat.add_sub_swap.
rewrite Nat.sub_diag. simpl. rewrite app_length.
rewrite <- Nat.add_0_r at 1. rewrite <- Nat.add_le_mono_l.
apply Nat.le_0_l. apply Nat.le_refl.
rewrite Nat.mul_comm. symmetry. rewrite <- Nat.add_0_r at 1.
replace 0 with (Nat.b2n (Nat.odd (length hd))) at 2.
rewrite <- Nat.div2_odd. reflexivity.
rewrite <- Nat.negb_even. rewrite L. reflexivity.
rewrite tm_build. rewrite app_length. rewrite Nat.mul_comm.
simpl. rewrite Nat.add_0_r. rewrite map_length. reflexivity.
rewrite <- Nat.negb_even. rewrite K. reflexivity.
apply Nat.lt_0_2.
assert (K': even (length a') = true). rewrite I'.
rewrite Nat.pow_succ_r. rewrite Nat.even_mul. reflexivity.
apply le_0_n.
*)
(* le motif XX YY -> préfixe congru à 5 ou à 7 modulo 8
donc double du préfixe congru à 2 modulo 4
compatible avec ???
Lemma tm_step_palindromic_even_center' :
forall (n k m: nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 0 < length a
-> length (hd ++ a) = S (2 * k) * 2^m
-> odd m = true.
*)
(* réduire par la réciproque du morphisme *)
Lemma tm_morphism_app : forall (l1 l2 : list bool),
tm_morphism (l1 ++ l2) = tm_morphism l1 ++ tm_morphism l2.
Lemma tm_morphism_app2 : forall (l hd tl : list bool),
tm_morphism l = hd ++ tl
-> even (length hd) = true
-> hd = tm_morphism (firstn (Nat.div2 (length hd)) l).
Lemma tm_morphism_app3 : forall (l hd tl : list bool),
tm_morphism l = hd ++ tl
-> even (length hd) = true
-> tl = tm_morphism (skipn (Nat.div2 (length hd)) l).
Lemma tm_step_palindromic_even_center :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 0 < length a
-> even (length (hd ++ a)) = true.
Lemma tm_step_palindromic_even_center' :
forall (n k m: nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 0 < length a
-> length (hd ++ a) = S (2 * k) * 2^m
-> odd m = true.
Lemma tm_step_proper_palindrome_center :
forall (n k m : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> length a = 2^(Nat.double m) (* palindrome non propre *)
-> List.last hd false = List.hd false tl.
Proof.
induction m.
- intros. simpl in H0.
destruct a. inversion H0. destruct a.
(* proof that hd is not nil *)
destruct hd. assert (odd 0 = true).
assert (nth_error (tm_step n) (S (2*0) * 2^0)
= nth_error (tm_step n) (pred (S (2*0) * 2^0))).
rewrite H. reflexivity. generalize H1.
assert (S (2*0) * 2^0 < 2^n). destruct n. inversion H.
rewrite Nat.mul_0_r. rewrite Nat.mul_1_l.
apply Nat.pow_lt_mono_r. apply Nat.lt_1_2. apply Nat.lt_0_succ.
generalize H2. apply tm_step_pred. inversion H1.
(* proof that tl is not nil *)
destruct tl. destruct n.
assert (tm_step 0 = rev (tm_step 0)). reflexivity.
rewrite H in H1 at 2. rewrite rev_app_distr in H1.
simpl in H1. inversion H1. rewrite <- tm_step_lemma in H.
assert (rev (tm_morphism (tm_step n)) = rev (tm_morphism (tm_step n))).
reflexivity. rewrite H in H1 at 2. rewrite tm_morphism_rev in H1.
rewrite rev_app_distr in H1. simpl in H1.
destruct (map negb (rev (tm_step n))). inversion H1. simpl in H1.
inversion H1. destruct b; inversion H4.
(* proof that b <> b1 *)
assert (I: {b=b1} + {~ b=b1}). apply bool_dec. destruct I.
rewrite e in H.
replace (rev [b1]) with ([b1]) in H.
replace (b1::tl) with ([b1] ++ tl) in H.
assert ([b1] <> [b1]). assert (0 < length [b1]). apply Nat.lt_0_1.
generalize H1. generalize H. apply tm_step_cubefree.
contradiction H1. reflexivity. reflexivity. reflexivity.
(* proof that b <> last (b0::hd) false *)
assert (I: {b=last (b0::hd) false} + {~ b=last (b0::hd) false}).
apply bool_dec. destruct I.
rewrite app_removelast_last with (l := b0::hd) (d := false) in H.
rewrite <- e in H. rewrite <- app_assoc in H.
replace (rev [b]) with ([b]) in H.
assert ([b] <> [b]). assert (0 < length [b]). apply Nat.lt_0_1.
generalize H1. generalize H. apply tm_step_cubefree.
contradiction H1. reflexivity. reflexivity. easy.
(* final part of the proof *)
destruct b; destruct b1; destruct (last (b0::hd) false).
reflexivity. contradiction n0. reflexivity.
contradiction n1. reflexivity. reflexivity.
reflexivity. contradiction n1. reflexivity.
contradiction n0. reflexivity. reflexivity.
inversion H0.
- intros.
induction m.
- intros. simpl in H0.
assert (I: a = (List.hd false a)::nil).
destruct a. inversion H0. destruct a. reflexivity. inversion H0.
assert (N: n = 0 \/ 0 < n). apply Nat.eq_0_gt_0_cases.
destruct N as [N|N]. rewrite N in H.
assert (length (tm_step 0) = length (tm_step 0)). reflexivity.
rewrite H in H1 at 2. rewrite app_length in H1.
rewrite app_length in H1. rewrite app_length in H1.
rewrite I in H1.
rewrite Nat.add_1_l in H1. simpl in H1.
rewrite Nat.add_comm in H1.
rewrite Nat.add_succ_l in H1. rewrite Nat.add_succ_l in H1.
apply Nat.succ_inj in H1. apply O_S in H1. contradiction H1.
assert (J: hd <> nil).
assert ({hd=nil} + {~ hd=nil}). apply list_eq_dec. apply bool_dec.
destruct H1. rewrite e in H.
simpl in H. rewrite app_assoc in H.
assert (count_occ bool_dec (a++rev a) true
= count_occ bool_dec (a++rev a) false).
assert (even (length (a++rev a))=true). rewrite I. reflexivity.
generalize H1. generalize H. apply tm_step_count_occ.
rewrite I in H1.
rewrite tm_step_head_1 in H. rewrite <- app_assoc in H.
inversion H. rewrite I in H3. inversion H3.
rewrite <- H4 in H1. inversion H1.
assumption.
assert (K: tl <> nil).
assert ({tl=nil} + {~ tl=nil}). apply list_eq_dec. apply bool_dec.
destruct H1. rewrite e in H.
assert (count_occ bool_dec (hd++a++rev a) true
= count_occ bool_dec (hd++a++rev a) false).
assert (even (length (hd++a++rev a))=true).
rewrite app_nil_r in H.
rewrite <- H. rewrite tm_size_power2.
destruct n. inversion N. rewrite Nat.pow_succ_r.
rewrite Nat.even_mul. reflexivity. apply Nat.le_0_l.
rewrite app_assoc in H. rewrite app_assoc in H.
replace ((hd++a)++rev a) with (hd++a++rev a) in H.
generalize H1. generalize H. apply tm_step_count_occ.
rewrite <- app_assoc. reflexivity.
assert (count_occ bool_dec hd true
= count_occ bool_dec hd false).
assert (even (length hd)=true).
assert (even (length (tm_step n)) = true).
rewrite tm_size_power2. destruct n. inversion N. rewrite Nat.pow_succ_r.
rewrite Nat.even_mul. reflexivity. apply Nat.le_0_l.
rewrite H in H2. rewrite app_length in H2.
rewrite Nat.even_add in H2. rewrite I in H2. simpl in H2.
destruct (Nat.even (length hd)). reflexivity. inversion H2.
generalize H2. generalize H. apply tm_step_count_occ.
rewrite count_occ_app in H1. symmetry in H1.
rewrite count_occ_app in H1. rewrite H2 in H1.
rewrite Nat.add_cancel_l in H1.
destruct a. inversion H0. destruct a. destruct b.
inversion H1. inversion H1. inversion H0.
assumption.
(* utiliser ici cubefree *)
assert (last hd false = true).
assert ({last hd false=true} + {~ last hd false=true}). apply bool_dec.
destruct H1. assumption.
assert (List.hd false (List.tl (tm_step n)) = nth 1 (tm_step n) false).
replace (rev a) with a in H.
assert (last hd false = negb (List.hd false a)).
assert ({last hd false=List.hd false a}
+ {~ last hd false=List.hd false a}). apply bool_dec.
destruct H1.
replace hd with ((removelast hd) ++ a) in H.
rewrite <- app_assoc in H.
assert (0 < length a). rewrite H0. apply Nat.lt_0_1.
assert (a<>a). generalize H1. generalize H. apply tm_step_cubefree.
contradiction H2. reflexivity.
rewrite I. rewrite <- e. symmetry. apply app_removelast_last.
/\ length a = 2^m /\ length (hd ++ a) = k
/\ last
)
-> (tm_step (S (S n)) =
(tm_morphism (tm_morphism hd)) ++
(*
Seules les puissances paires de 2 (16, 64, etc.) sont des longueurs
de palindromes propres (palindromes piles de cette taille pas
encapsulés dans des plus gros palindromes) :
Positions du centre pour 16 :
In [25]: [ i+32 for i in range(32, 800) if test_proper_palidrome(T
...: , i, 64) ]
Out[25]: [96, 160, 352, 416, 480, 544, 608, 672]
In [26]: [ i+8 for i in range(8, 300) if test_proper_palidrome(T,
...: i, 16) ]
Out[26]: [24, 40, 88, 104, 120, 136, 152, 168, 216, 232, 280, 296]
In [27]: [ i+2 for i in range(2, 100) if test_proper_palidrome(T,
...: i, 4) ]
Out[27]: [6, 10, 22, 26, 30, 34, 38, 42, 54, 58, 70, 74, 86, 90, 94, 98]
Idée de lemme : si k est une position centrale pour un palindrome propre
de taille 2^j, alors 4*k est une position centrale pour un palindrome
propre de taille 2^(S (S j))
*)
(*
Lemma tm_step_palindromic_full : forall (n : nat),
tm_step (Nat.double (S n)) =
(tm_step (S (Nat.double n))) ++ rev (tm_step (S (Nat.double n))).
Proof.
intro n. rewrite tm_step_odd_step. rewrite <- tm_build.
rewrite Nat.double_S. reflexivity.
Qed.
*)
(*
Lemma tm_step_palindromic_even_seed :
forall (n : nat) (hd a tl : list bool),
tm_step (S n) = hd ++ a ++ (rev a) ++ tl
-> 0 < length a
-> (2^n <= length hd) \/ (2^n <= length tl) \/ (length (hd ++a) = 2^n).
Proof.
intro n. induction n.
- intros hd a tl. intros H I. destruct a.
+ inversion I.
+ destruct a.
assert (length (tm_step 1) = length (tm_step 1)). reflexivity.
rewrite H in H0 at 2. rewrite app_length in H0. simpl in H0.
rewrite Nat.add_succ_r in H0. rewrite Nat.add_succ_r in H0.
apply Nat.succ_inj in H0. apply Nat.succ_inj in H0.
destruct hd; destruct tl. right. right. reflexivity.
right. left. simpl. apply le_n_S. apply le_0_n.
rewrite Nat.add_0_r in H0. simpl in H0. apply O_S in H0.
contradiction H0. simpl in H0. apply O_S in H0. contradiction H0.
assert (length (tm_step 1) = length (tm_step 1)). reflexivity.
rewrite H in H0 at 2. rewrite app_length in H0. simpl in H0.
rewrite Nat.add_succ_r in H0. rewrite Nat.add_succ_r in H0.
apply Nat.succ_inj in H0. apply Nat.succ_inj in H0.
rewrite app_length in H0. rewrite app_length in H0.
rewrite app_length in H0. simpl in H0.
rewrite Nat.add_succ_r in H0. rewrite Nat.add_0_r in H0.
rewrite Nat.add_succ_l in H0. rewrite Nat.add_succ_r in H0.
rewrite Nat.add_succ_r in H0. apply O_S in H0. contradiction H0.
- intros hd a tl. intros H I. rewrite tm_build in H.
assert (2^S n <= length hd \/ length hd < 2^S n). apply Nat.le_gt_cases.
assert (2^S n <= length tl \/ length tl < 2^S n). apply Nat.le_gt_cases.
destruct H0. left. assumption. destruct H1. right. left. assumption.
right. right.
assert (2^S n <= length (hd++a) \/ length (hd++a) < 2^S n).
apply Nat.le_gt_cases. destruct H2. apply Nat.lt_eq_cases in H2.
destruct H2.
pose (c := length (hd ++ a) - 2^ S n). (* ce qui dépasse, excès de a *)
pose (d := skipn ((length a) - c) a). (* on cherche le milieu de tm_step S (S n) *)
pose (e := d ++ firstn c (rev a)).
(* TODO e = rev e est-il vraiment utile ??? *)
assert (e = rev e). (* nouveau palindrome dans la seconde moitié *)
unfold e. unfold d.
rewrite firstn_rev. rewrite rev_app_distr. rewrite rev_involutive.
reflexivity.
(* montrer que e est dans la seconde moitié, excentré *)
assert (a = (firstn (length a - c) a) ++ d). unfold d.
symmetry. apply firstn_skipn.
rewrite H4 in H. rewrite <- app_assoc in H. rewrite rev_app_distr in H.
rewrite <- app_assoc in H. rewrite app_assoc in H.
assert (length hd + length a - 2 ^ S n <= length a).
rewrite Nat.add_le_mono_r with (p := 2^S n).
rewrite Nat.sub_add. rewrite Nat.add_comm at 1.
rewrite <- Nat.add_le_mono_l. apply Nat.lt_le_incl. assumption.
rewrite <- app_length. apply Nat.lt_le_incl. assumption.
assert (length (tm_step (S n)) = length (hd ++ firstn (length a - c) a)).
unfold c. rewrite app_length. rewrite tm_size_power2.
rewrite firstn_length_le. rewrite app_length.
rewrite Nat.add_sub_assoc.
replace (length hd + length a)
with (length hd + length a - 2^S n + 2^S n) at 1.
rewrite Nat.add_sub_swap. rewrite <- Nat.add_0_l at 1.
rewrite Nat.add_cancel_r. symmetry. apply Nat.sub_diag.
apply Nat.le_refl. rewrite <- Nat.add_sub_swap.
rewrite Nat.add_sub. reflexivity. apply Nat.lt_le_incl.
rewrite <- app_length. assumption. assumption.
apply Nat.le_sub_le_add_r. rewrite <- Nat.add_0_r at 1.
rewrite <- Nat.add_le_mono_l. apply le_0_n.
assert (tm_step (S n) = hd ++ firstn (length a - c) a).
generalize H6. generalize H.
apply app_eq_length_head. rewrite <- H7 in H.
apply app_inv_head in H.
assert (map negb (tm_step (S n)) = e ++ ??? ++ tl). unfold e. unfold d.
intros n hd a tl. intros H I.
induction n.
- right. right. destruct a. inversion I. destruct a.
assert (length (tm_step 1) = length (tm_step 1)). reflexivity.
rewrite H in H0 at 2. rewrite app_length in H0. simpl in H0.
rewrite Nat.add_succ_r in H0. rewrite Nat.add_succ_r in H0.
apply Nat.succ_inj in H0. apply Nat.succ_inj in H0.
destruct hd; destruct tl. reflexivity. reflexivity.
rewrite Nat.add_0_r in H0. simpl in H0. apply O_S in H0.
contradiction H0. simpl in H0. apply O_S in H0. contradiction H0.
assert (length (tm_step 1) = length (tm_step 1)). reflexivity.
rewrite H in H0 at 2. rewrite app_length in H0. simpl in H0.
rewrite Nat.add_succ_r in H0. rewrite Nat.add_succ_r in H0.
apply Nat.succ_inj in H0. apply Nat.succ_inj in H0.
rewrite app_length in H0. rewrite app_length in H0.
rewrite app_length in H0. simpl in H0.
rewrite Nat.add_succ_r in H0. rewrite Nat.add_0_r in H0.
rewrite Nat.add_succ_l in H0. rewrite Nat.add_succ_r in H0.
rewrite Nat.add_succ_r in H0. apply O_S in H0. contradiction H0.
-
*)
(* TODO: reprendre tous les lemmes hd ++ a ++ rev a ++ tl
et trouver un équivalent pour hd ++ a ++ map negb (rev a) ++ tl *)
(*
TODO: les palindromes de longueur 16 sont centrés autour
des valeurs de la suite ci-dessous A056196
TODO: erratum 216 est un centre possible ! (216 = 2^3 3^3)
A056196 Numbers n such that A055229(n) = 2. +30
2
8, 24, 32, 40, 56, 72, 88, 96, 104, 120, 128, 136, 152, 160, 168, 184, 200, 224, 232,
248, 264, 280, 288, 296, 312, 328, 344, 352, 360, 376, 384, 392, 408, 416, 424, 440,
456, 472, 480, 488, 504, 512, 520, 536, 544, 552, 568, 584, 600, 608, 616, 632, 640
(list; graph; refs; listen; history; text; internal format)
OFFSET 1,1
COMMENTS By definition, the largest square divisor and squarefree part of these
numbers have GCD = 2.
Different from A036966. E.g., 81 is not here because A055229(81) = 1.
Numbers of the form 2^(2*k+1) * m, where k >= 1 and m is an odd number
whose prime factorization contains only exponents that are either 1 or
even. The asymptotic density of this sequence is (1/12) * Product_{p odd
prime} (1-1/(p^2*(p+1))) = A065465 / 11 = 0.08013762179319734335... -
Amiram Eldar, Dec 04 2020, Nov 25 2022
LINKS Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE 88 is here because 88 has squarefree part 22, largest square divisor 4,
and A055229(88) = gcd(22, 4) = 2.
*)