coqbooks/src/subsequences.v
Thomas Baruchel 0717e31ca9 Update
2023-10-29 21:10:19 +01:00

281 lines
8.3 KiB
Coq

Require Import Nat.
Require Import PeanoNat.
Require Import List.
Import ListNotations.
Definition subsequence (l s : list Type) :=
exists (l1: list Type) (l2 : list (list Type)),
length s = length l2
/\ l = l1 ++ flat_map (fun e => (fst e) :: (snd e)) (combine s l2).
Definition subsequence2 (l s : list Type) :=
exists (t: list bool),
length t = length l /\ s = map snd (filter fst (combine t l)).
Theorem subsequence_nil_r : forall (l : list Type), subsequence l nil.
Proof.
intro l. unfold subsequence. exists l. exists nil. rewrite app_nil_r.
split; easy.
Qed.
Theorem subsequence_nil_cons_r : forall (l: list Type) (a:Type),
~ subsequence nil (a::l).
Proof.
intros l a. unfold subsequence. unfold not. intro H.
destruct H. destruct H. destruct H.
destruct x. rewrite app_nil_l in H0.
destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
simpl in H0. apply nil_cons in H0. contradiction H0.
apply nil_cons in H0. contradiction H0.
Qed.
Theorem subsequence2_nil_r : forall (l : list Type), subsequence2 l nil.
Proof.
intro l. unfold subsequence2.
exists (repeat false (length l)). rewrite repeat_length.
split. easy.
induction l. reflexivity. simpl. assumption.
Qed.
Theorem subsequence2_nil_cons_r : forall (l: list Type) (a:Type),
~ subsequence2 nil (a::l).
Proof.
intros l a. unfold subsequence2. unfold not. intro H. destruct H.
destruct H. assert (x = nil). destruct x. reflexivity.
apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
rewrite H1 in H0. symmetry in H0. apply nil_cons in H0. contradiction H0.
Qed.
Theorem subsequence2_cons_eq : forall (l1 l2: list Type) (a: Type),
subsequence2 (a::l1) (a::l2) <-> subsequence2 l1 l2.
Proof.
assert (forall (l s: list Type) t,
s = map snd (filter fst (combine t l))
-> length t = length l
-> count_occ Bool.bool_dec t true = length s).
intros l s t.
generalize l s. induction t. intros l0 s0. intros J K.
simpl in J. rewrite J. reflexivity.
intros l0 s0. intros J K.
destruct a. destruct s0. destruct l0.
apply Nat.neq_succ_0 in K. contradiction K.
apply nil_cons in J. contradiction J. simpl. apply eq_S.
destruct l0.
apply Nat.neq_succ_0 in K. contradiction K.
apply IHt with (l := l0). inversion J. rewrite <- H1.
reflexivity. inversion K. reflexivity.
simpl. destruct l0.
apply Nat.neq_succ_0 in K. contradiction K.
apply IHt with (l := l0). inversion J. simpl.
reflexivity. inversion K. reflexivity.
(* fin de la démonstration de H *)
intros l1 l2 a. split; intro I.
unfold subsequence2 in I. destruct I. destruct H0. destruct x.
simpl in H0. symmetry in H0.
apply PeanoNat.Nat.neq_succ_0 in H0. contradiction H0.
destruct b. simpl in H0. inversion H1. rewrite <- H3.
unfold subsequence2. exists x. split. inversion H0. reflexivity.
assumption.
simpl in H1. unfold subsequence2. exists x. split. inversion H0.
reflexivity.
assert (count_occ Bool.bool_dec x true = length (a::l2)).
apply H with (l := l1). assumption. inversion H0. assumption.
Theorem subsequence2_dec :
(forall x y : Type, {x = y} + {x <> y})
-> forall (l s : list Type), { subsequence2 l s } + { ~ subsequence2 l s }.
Proof.
intro H.
intros l. induction l. intro s. destruct s. left. apply subsequence2_nil_r.
right. apply subsequence2_nil_cons_r.
intro s. assert({subsequence2 l s} + {~ subsequence2 l s}). apply IHl.
destruct H0.
left. unfold subsequence2. unfold subsequence2 in s0. destruct s0.
destruct H0. exists (false::x). split. simpl. rewrite H0. reflexivity.
simpl. assumption.
destruct s. left. apply subsequence2_nil_r.
assert ({T=a}+{T<>a}). apply H. destruct H0.
rewrite e.
intro l0. destruct l0. right. apply subsequence2_nil_cons_r.
assert ({ subsequence2 l0 s } + { ~ subsequence2 l0 s }). apply IHs.
Theorem subsequence2_dec :
(forall x y : Type, {x = y} + {x <> y})
-> forall (l s : list Type), { subsequence2 l s } + { ~ subsequence2 l s }.
Proof.
intro H.
intros l s. generalize l. induction s. left. apply subsequence2_nil_r.
intro l0. destruct l0. right. apply subsequence2_nil_cons_r.
assert ({ subsequence2 l0 s } + { ~ subsequence2 l0 s }). apply IHs.
assert ({T=a}+{T<>a}). apply H. destruct H0; destruct H1.
left. unfold subsequence2. unfold subsequence2 in s0. destruct s0.
destruct H0. exists (true::x). simpl. rewrite H0. split. reflexivity.
rewrite e. rewrite H1. reflexivity.
(*
assert ({In a l0}+{~ In a l0}). apply In_dec. assumption.
destruct H0. apply In_split in i. destruct i.
*)
Theorem subsequence_dec : forall (l s : list Type),
{ subsequence l s } + { ~ subsequence l s }.
Proof.
intros l s. generalize l. induction s. left. apply subsequence_nil_r.
intro l0. destruct l0. right. apply subsequence_nil_cons_r.
intros l s. induction s. left. apply subsequence_nil_r.
destruct l. right. apply subsequence_nil_cons_r.
unfold subsequence2. destruct s. simpl.
left. exists nil. easy. right.
unfold not. intro H. destruct H. destruct H.
rewrite combine_nil in H0.
symmetry in H0. apply nil_cons in H0. assumption.
destruct IHl. left. unfold subsequence2. assert (H := s0).
unfold subsequence2 in H. destruct H. destruct H.
exists (false::x). split. simpl. apply eq_S. assumption.
assumption.
(* destructurer s puis tester les deux cas : a = (car s) ou non *)
destruct s. left. unfold subsequence2.
Theorem subsequence_dec : forall (l s : list nat),
{ subsequence2 l s } + { ~ subsequence2 l s }.
Proof.
intros l s. induction l.
unfold subsequence2. destruct s. simpl.
left. exists nil. easy. right.
unfold not. intro H. destruct H. destruct H.
rewrite combine_nil in H0.
symmetry in H0. apply nil_cons in H0. assumption.
destruct IHl. left. unfold subsequence2. assert (H := s0).
unfold subsequence2 in H. destruct H. destruct H.
exists (false::x). split. simpl. apply eq_S. assumption.
assumption.
(* destructurer s puis tester les deux cas : a = (car s) ou non *)
destruct s. left. unfold subsequence2.
exists (repeat false (S (length l))). rewrite repeat_length.
split. easy. simpl.
assert (forall u,
(nil: list nat)
= map snd (filter fst (combine (repeat false (length u)) u))).
intro u. induction u. reflexivity. simpl. assumption. apply H.
assert ({a=n0}+{a<>n0}). apply PeanoNat.Nat.eq_dec. destruct H.
Theorem subsequence_eq_def : forall l s, subsequence l s <-> subsequence2 l s.
Proof.
intro l. induction l.
(* first part of the induction *)
intro s. unfold subsequence. unfold subsequence2.
split. exists nil. split. reflexivity. simpl.
destruct H. destruct H. destruct H.
assert (x = nil). destruct x. reflexivity. simpl in H0.
apply nil_cons in H0. contradiction H0. rewrite H1 in H0.
simpl in H0. assert (combine s x0 = nil).
destruct (combine s x0). reflexivity. simpl in H0.
apply nil_cons in H0. contradiction H0.
destruct x0. destruct s. reflexivity. simpl in H.
apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
destruct s. reflexivity. simpl in H2.
symmetry in H2. apply nil_cons in H2. contradiction H2.
exists nil. exists nil. destruct s. simpl. easy.
destruct H. destruct H.
assert (x = nil). destruct x. reflexivity. simpl in H.
apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
rewrite H1 in H0. simpl in H0.
symmetry in H0. apply nil_cons in H0. contradiction H0.
(* second part of the induction *)
intro s. destruct s. unfold subsequence. unfold subsequence2. split.
exists (repeat false (S (length l))). rewrite repeat_length.
split. easy. simpl.
assert (forall u,
(nil: list Type)
= map snd (filter fst (combine (repeat false (length u)) u))).
intro u. induction u. reflexivity. simpl. assumption. apply H0.
exists (a::l). exists (nil). simpl. split; try rewrite app_nil_r; reflexivity.
(* deux cas : a = n ou non *)
assert ({a=n} + {a<>n}). apply PeanoNat.Nat.eq_dec. destruct H.
unfold subsequence. unfold subsequence2. split.
destruct H. destruct H. destruct H.
assert (x0 = nil). symmetry in H. apply length_zero_iff_nil in H.
assumption. rewrite H1 in H0. simpl in H0.
Example test1: subsequence [1;2;3;4;5] [1;3;5].
Proof.
unfold subsequence.
exists [].
exists [[2];[4];[]]. simpl. easy.
Qed.
Example test2: subsequence [1;2;3;4;5] [2;4].
Proof.
unfold subsequence.
exists [1].
exists [[3];[5]]. simpl. easy.
Qed.