Compare commits
3 Commits
a8cdd31830
...
3b91125216
Author | SHA1 | Date | |
---|---|---|---|
|
3b91125216 | ||
|
0cf8e80ecf | ||
|
e885bb3a7e |
21
thue-morse.v
21
thue-morse.v
@ -904,7 +904,7 @@ Proof.
|
||||
Qed.
|
||||
|
||||
Theorem tm_step_stable : forall (n m k : nat),
|
||||
k < 2^n -> k < 2^m -> nth_error(tm_step n) k = nth_error (tm_step m) k.
|
||||
k < 2^n -> k < 2^m -> nth_error (tm_step n) k = nth_error (tm_step m) k.
|
||||
Proof.
|
||||
intros n m k. intros.
|
||||
assert (I: n < m /\ max n m = m \/ m <= n /\ max n m = n).
|
||||
@ -1089,11 +1089,30 @@ Lemma tm_step_cancel_high_bits :
|
||||
<-> odd n = true.
|
||||
Proof.
|
||||
intros k b n m. intros H I.
|
||||
assert (J: nth_error (tm_step (S n)) (2^n-1) = nth_error (tm_step (S n)) (2^n)
|
||||
<-> odd n = true).
|
||||
assert (2^n - 1 < 2^n).
|
||||
apply Nat.sub_lt. replace (1) with (2^0) at 1. apply Nat.pow_le_mono_r.
|
||||
easy. apply le_0_n. simpl. reflexivity. apply Nat.lt_0_1.
|
||||
rewrite tm_step_single_bit_index.
|
||||
assert (nth_error (tm_step n) (2^n - 1) = nth_error (tm_step (S n)) (2^n-1)).
|
||||
apply tm_step_stable. apply H0.
|
||||
assert (2^n < 2^(S n)). apply Nat.pow_lt_mono_r. apply Nat.lt_1_2.
|
||||
apply Nat.lt_succ_diag_r.
|
||||
generalize H1. generalize H0. apply Nat.lt_trans. rewrite <- H1.
|
||||
rewrite tm_step_repunit_index.
|
||||
|
||||
rewrite Nat.succ_lt_mono. simpl.
|
||||
(*
|
||||
assert (K: nth_error (tm_step n) a = Some (odd n)). rewrite I.
|
||||
apply tm_step_repunit.
|
||||
*)
|
||||
|
||||
Lemma tm_step_next_range :
|
||||
forall (n k : nat) (b : bool),
|
||||
nth_error (tm_step n) k = Some b -> nth_error (tm_step (S n)) k = Some b.
|
||||
Theorem tm_step_stable : forall (n m k : nat),
|
||||
k < 2^n -> k < 2^m -> nth_error(tm_step n) k = nth_error (tm_step m) k.
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user