Compare commits

...

2 Commits

Author SHA1 Message Date
Thomas Baruchel
378bb79288 Update 2023-10-31 19:31:38 +01:00
Thomas Baruchel
9f5c7bdc32 Update 2023-10-31 14:43:53 +01:00

View File

@ -358,7 +358,103 @@ Proof.
Qed. Qed.
Theorem subsequence2_app {X: Type} :
forall l1 s1 l2 s2 : list X,
subsequence2 l1 s1 -> subsequence2 l2 s2 -> subsequence2 (l1++l2) (s1++s2).
Proof.
intros l1 s1 l2 s2. intros H I.
destruct H. destruct I. exists (x++x0). destruct H. destruct H0.
split. rewrite app_length. rewrite app_length.
rewrite H. rewrite H0. reflexivity.
rewrite H1. rewrite H2.
assert (J: forall (t : list bool) (u : list X) (v: list bool) (w : list X),
length t = length u
-> combine (t++v) (u++w) = (combine t u) ++ (combine v w)).
intros t u v w. generalize u. induction t; intro u0; intro K.
replace u0 with (nil : list X). reflexivity.
destruct u0. reflexivity. apply O_S in K. contradiction K.
destruct u0. symmetry in K. apply O_S in K. contradiction K.
simpl. rewrite IHt. reflexivity. inversion K. reflexivity.
rewrite J. rewrite filter_app. rewrite map_app. reflexivity.
assumption.
Qed.
Theorem subsequence_trans {X: Type} :
forall (l1 l2 l3: list X),
subsequence l1 l2 -> subsequence2 l2 l3 -> subsequence2 l1 l3.
Proof.
intros l1 l2 l3. intros H I.
destruct H. destruct H. destruct H. destruct I. destruct H1.
exists (
(repeat false (length x)) ++
(flat_map (fun e => (fst e) :: (repeat false (length (snd e))))
(combine x1 x0))).
split.
rewrite app_length. rewrite repeat_length.
rewrite H0. rewrite app_length. rewrite Nat.add_cancel_l.
rewrite flat_map_length. rewrite flat_map_length.
assert (forall (u: list X) (v: list (list X)),
length u = length v
-> list_sum (map (fun z => length (fst z :: snd z))
(combine u v))
= list_sum (map (fun z => S (length z)) v)).
intros u v. generalize u. induction v; intro u0; intro I.
apply length_zero_iff_nil in I. rewrite I. reflexivity.
destruct u0.
symmetry in I. apply PeanoNat.Nat.neq_succ_0 in I. contradiction I.
simpl. rewrite IHv. reflexivity. inversion I. reflexivity.
rewrite H3.
assert (forall (u: list bool) (v: list (list X)),
length u = length v
-> list_sum (map (fun z => length (fst z :: repeat false (length (snd z))))
(combine u v))
= list_sum (map (fun z => S (length z)) v)).
intros u v. generalize u.
induction v; intro u0; intro I; destruct u0. reflexivity.
apply PeanoNat.Nat.neq_succ_0 in I. contradiction I.
symmetry in I. apply PeanoNat.Nat.neq_succ_0 in I. contradiction I.
simpl. rewrite IHv. rewrite repeat_length. reflexivity.
inversion I. reflexivity. rewrite H4. reflexivity.
rewrite H1. rewrite H. reflexivity. assumption.
assert (K: forall (w v: list X) u,
filter fst (combine ((repeat false (length w)) ++ u)
(w ++ v)) = filter fst (combine u v)).
intro w0. induction w0. reflexivity. apply IHw0.
rewrite H2. rewrite H0.
assert (forall (u v: list X) (w: list bool),
map snd (filter fst (combine ((repeat false (length u)) ++ w) (u ++ v)))
= map snd (filter fst (combine w v))).
intro u. induction u; intros v w. reflexivity.
apply IHu. rewrite H3.
assert (forall (u: list bool) (v: list X) (w: list (list X)),
length u = length w
-> length u = length v
-> filter fst (combine
(flat_map
(fun e => fst e:: (repeat false (length (snd e))))
(combine u w))
(flat_map (fun e => fst e :: snd e) (combine v w)))
= filter fst (combine u v)).
intros u v w. generalize u. generalize v.
induction w; intros v0 u0; intros I J.
apply length_zero_iff_nil in I. rewrite I in J. rewrite I.
symmetry in J. apply length_zero_iff_nil in J. rewrite J.
reflexivity.
destruct u0. reflexivity. destruct v0.
apply PeanoNat.Nat.neq_succ_0 in J. contradiction J.
destruct b; simpl; rewrite K; rewrite IHw.
reflexivity. inversion I. reflexivity. inversion J. reflexivity.
reflexivity. inversion I. reflexivity. inversion J. reflexivity.
rewrite H4. reflexivity.
rewrite H1. rewrite H. reflexivity.
rewrite H1. reflexivity.
Qed.
Example test1: subsequence [1;2;3;4;5] [1;3;5]. Example test1: subsequence [1;2;3;4;5] [1;3;5].