Compare commits
3 Commits
00cf74be9c
...
d80ca6b8bb
Author | SHA1 | Date | |
---|---|---|---|
|
d80ca6b8bb | ||
|
43d97734b2 | ||
|
24d88f1928 |
@ -232,7 +232,6 @@ Proof.
|
||||
apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct u. apply O_S in I. contradiction I.
|
||||
simpl. rewrite H1. rewrite <- IHv; inversion I; reflexivity.
|
||||
|
||||
rewrite H1. rewrite <- H2; inversion H; reflexivity.
|
||||
Qed.
|
||||
|
||||
@ -250,15 +249,11 @@ Proof.
|
||||
rewrite J. apply subsequence3_nil_r.
|
||||
destruct v. apply subsequence3_nil_r.
|
||||
destruct w. apply Nat.neq_succ_0 in I. contradiction I.
|
||||
destruct a. exists nil. exists w.
|
||||
inversion J. apply IHu in H3.
|
||||
split. reflexivity. inversion J. rewrite <- H5. assumption.
|
||||
inversion I. reflexivity. simpl in J.
|
||||
|
||||
assert (subsequence3 w (x0::v)). apply IHu.
|
||||
inversion I. reflexivity. assumption.
|
||||
apply subsequence3_cons_l. assumption.
|
||||
|
||||
destruct a. exists nil. exists w. inversion J.
|
||||
apply IHu in H3. split; inversion J; try rewrite <- H5; easy.
|
||||
inversion I. reflexivity.
|
||||
assert (subsequence3 w (x0::v)). apply IHu; inversion I; easy.
|
||||
apply subsequence3_cons_l; assumption.
|
||||
apply I with (u := x); assumption.
|
||||
Qed.
|
||||
|
||||
@ -299,10 +294,8 @@ Proof.
|
||||
destruct I. destruct H0. destruct x0.
|
||||
symmetry in H1. apply nil_cons in H1. contradiction H1.
|
||||
destruct b.
|
||||
inversion H1. rewrite H3 in n0. contradiction n0. reflexivity.
|
||||
|
||||
assert (subsequence2 l (x::s)). exists x0. split; inversion H0; easy.
|
||||
apply n in H2. contradiction H2.
|
||||
inversion H1. rewrite H3 in n0. easy.
|
||||
apply n. exists x0; split; inversion H0; easy.
|
||||
Qed.
|
||||
|
||||
|
||||
@ -430,9 +423,8 @@ Proof.
|
||||
apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct u0. reflexivity. destruct v0.
|
||||
apply PeanoNat.Nat.neq_succ_0 in J; contradiction J.
|
||||
destruct b; simpl; rewrite K; rewrite IHw.
|
||||
reflexivity. inversion I; reflexivity. inversion J; reflexivity.
|
||||
reflexivity. inversion I; reflexivity. inversion J; reflexivity.
|
||||
destruct b; simpl; rewrite K; rewrite IHw;
|
||||
inversion I; inversion J; reflexivity.
|
||||
rewrite H4; try rewrite H1; try rewrite H; reflexivity.
|
||||
Qed.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user