This commit is contained in:
Thomas Baruchel 2022-11-23 17:25:16 +01:00
parent 7d8b5cad3e
commit f0358d7381

View File

@ -872,37 +872,6 @@ Proof.
apply list_app_length_lt in H0. rewrite H1 in H0. apply H0.
Qed.
Lemma tm_step_next_range2 :
forall (n : nat) (l1 l2 : list bool) (b : bool),
tm_step n = l1 ++ b :: l2
-> nth_error (tm_step (S n)) (length l1 + 2^n) = Some (negb b).
Proof.
intros n l1 l2 b. intros H.
assert (nth_error (tm_step n) (length l1) = Some b).
generalize H. apply list_concat_to_pos.
rewrite tm_build.
assert (I: length l1 < 2^n).
rewrite <- tm_size_power2. generalize H. apply list_app_length_lt.
rewrite nth_error_app2. rewrite tm_size_power2.
rewrite Nat.add_sub. apply map_nth_error. apply H0.
rewrite tm_size_power2. apply Nat.le_add_l.
Qed.
Lemma tm_step_next_range2' :
forall (n k : nat) (b : bool),
nth_error (tm_step n) k = Some b
-> nth_error (tm_step (S n)) (k + 2^n) = Some (negb b).
Proof.
intros n k b. intros H. assert (I := H).
apply nth_error_split in H. destruct H. destruct H. inversion H.
rewrite tm_build.
assert (J: k < 2^n).
rewrite <- tm_size_power2. rewrite <- H1. generalize H0. apply list_app_length_lt.
rewrite nth_error_app2. rewrite tm_size_power2.
rewrite Nat.add_sub. apply map_nth_error. apply I.
rewrite tm_size_power2. apply Nat.le_add_l.
Qed.
Lemma tm_add_range : forall (n m k : nat),
k < 2^n -> nth_error (tm_step n) k = nth_error (tm_step (n+m)) k.
Proof.
@ -939,7 +908,78 @@ Proof.
reflexivity.
Qed.
Lemma tm_step_next_range2 :
forall (n : nat) (l1 l2 : list bool) (b : bool),
tm_step n = l1 ++ b :: l2
-> nth_error (tm_step (S n)) (length l1 + 2^n) = Some (negb b).
Proof.
intros n l1 l2 b. intros H.
assert (nth_error (tm_step n) (length l1) = Some b).
generalize H. apply list_concat_to_pos.
rewrite tm_build.
assert (I: length l1 < 2^n).
rewrite <- tm_size_power2. generalize H. apply list_app_length_lt.
rewrite nth_error_app2. rewrite tm_size_power2.
rewrite Nat.add_sub. apply map_nth_error. apply H0.
rewrite tm_size_power2. apply Nat.le_add_l.
Qed.
Lemma tm_step_next_range2' :
forall (n k : nat) (b : bool),
nth_error (tm_step n) k = Some b
-> nth_error (tm_step (S n)) (k + 2^n) = Some (negb b).
Proof.
intros n k b. intros H. assert (I := H).
apply nth_error_split in H. destruct H. destruct H. inversion H.
rewrite tm_build.
assert (J: k < 2^n).
rewrite <- tm_size_power2. rewrite <- H1. generalize H0. apply list_app_length_lt.
rewrite nth_error_app2. rewrite tm_size_power2.
rewrite Nat.add_sub. apply map_nth_error. apply I.
rewrite tm_size_power2. apply Nat.le_add_l.
Qed.
Lemma tm_step_next_range2_neighbor : forall (n m k : nat),
S k < 2^n ->
eqb (nth k (tm_step n) false) (nth (S k) (tm_step n) false)
= eqb
(nth (k + 2^n) (tm_step (S n)) false) (nth (S k + 2^n) (tm_step (S n)) false).
Proof.
intros n m k. intros H. rewrite <- tm_size_power2 in H.
assert (I := H). apply Nat.lt_succ_l in I.
assert (J : nth_error (tm_step n) k = Some (nth k (tm_step n) false)).
generalize I. apply nth_error_nth'.
assert (K : nth_error (tm_step n) (S k) = Some (nth (S k) (tm_step n) false)).
generalize H. apply nth_error_nth'.
assert (L := J). apply tm_step_next_range2' in L.
assert (M := K). apply tm_step_next_range2' in M.
destruct (nth k (tm_step n) false).
destruct (nth (S k) (tm_step n) false).
apply nth_error_nth with (d :=false) in L.
apply nth_error_nth with (d :=false) in M.
rewrite L. rewrite M. reflexivity.
apply nth_error_nth with (d :=false) in L.
apply nth_error_nth with (d :=false) in M.
rewrite L. rewrite M. reflexivity.
destruct (nth (S k) (tm_step n) false).
apply nth_error_nth with (d :=false) in L.
apply nth_error_nth with (d :=false) in M.
rewrite L. rewrite M. reflexivity.
apply nth_error_nth with (d :=false) in L.
apply nth_error_nth with (d :=false) in M.
rewrite L. rewrite M. reflexivity.
Qed.
nth_error_nth':
forall [A : Type] (l : list A) [n : nat] (d : A),
n < length l -> nth_error l n = Some (nth n l d)