Update
This commit is contained in:
parent
75e2fb9acd
commit
eefee9f83d
@ -898,6 +898,51 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma tm_step_consecutive_identical :
|
||||||
|
forall (n : nat) (hd a tl : list bool) (b : bool),
|
||||||
|
tm_step n = hd ++ (b::b::nil) ++ tl
|
||||||
|
-> odd (length hd) = true.
|
||||||
|
Proof.
|
||||||
|
intros n hd a tl b. intro H.
|
||||||
|
assert (J: {even (length hd) = false} + { ~ (even (length hd)) = false}).
|
||||||
|
apply bool_dec. destruct J.
|
||||||
|
- rewrite <- Nat.negb_even. rewrite e. reflexivity.
|
||||||
|
- apply not_false_is_true in n0.
|
||||||
|
assert (K: count_occ Bool.bool_dec hd true
|
||||||
|
= count_occ Bool.bool_dec hd false).
|
||||||
|
generalize n0. generalize H. apply tm_step_count_occ.
|
||||||
|
assert (L: count_occ Bool.bool_dec (hd ++ [b;b]) true
|
||||||
|
= count_occ Bool.bool_dec (hd ++ [b;b]) false).
|
||||||
|
assert (even (length (hd ++ [b;b])) = true).
|
||||||
|
rewrite app_length. rewrite Nat.even_add_even. assumption.
|
||||||
|
simpl. apply Nat.EvenT_Even. apply Nat.even_EvenT. reflexivity.
|
||||||
|
generalize H0. rewrite app_assoc in H. generalize H.
|
||||||
|
apply tm_step_count_occ.
|
||||||
|
rewrite count_occ_app in L. rewrite count_occ_app in L.
|
||||||
|
rewrite K in L. rewrite Nat.add_cancel_l in L.
|
||||||
|
destruct b. simpl in L. inversion L. simpl in L. inversion L.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma tm_step_consecutive_identical' :
|
||||||
|
forall (n : nat) (hd a tl : list bool) (b1 b2 : bool),
|
||||||
|
tm_step n = hd ++ (b1::b1::nil) ++ a ++ (b2::b2::nil) ++ tl
|
||||||
|
-> even (length a) = true.
|
||||||
|
Proof.
|
||||||
|
intros n hd a tl b1 b2. intros H.
|
||||||
|
assert (Nat.odd (length hd) = true).
|
||||||
|
generalize H. apply tm_step_consecutive_identical. apply hd.
|
||||||
|
rewrite app_assoc in H. rewrite app_assoc in H.
|
||||||
|
assert (Nat.odd (length ((hd ++ [b1;b1])++a)) = true).
|
||||||
|
generalize H. apply tm_step_consecutive_identical. apply hd.
|
||||||
|
rewrite app_length in H1. rewrite Nat.odd_add in H1.
|
||||||
|
rewrite app_length in H1. rewrite Nat.odd_add in H1. rewrite H0 in H1.
|
||||||
|
replace (Nat.odd (length a)) with (negb (Nat.even (length a))) in H1.
|
||||||
|
destruct (even (length a)). reflexivity. inversion H1.
|
||||||
|
reflexivity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma tm_step_factor4_odd_prefix : forall (n : nat) (hd a tl : list bool),
|
Lemma tm_step_factor4_odd_prefix : forall (n : nat) (hd a tl : list bool),
|
||||||
tm_step n = hd ++ a ++ tl
|
tm_step n = hd ++ a ++ tl
|
||||||
-> length a = 4 -> odd (length hd) = true
|
-> length a = 4 -> odd (length hd) = true
|
||||||
|
@ -8,57 +8,6 @@ Require Import Bool.
|
|||||||
Import ListNotations.
|
Import ListNotations.
|
||||||
|
|
||||||
|
|
||||||
(**
|
|
||||||
The following lemma, while not of truly general use, is
|
|
||||||
used in several proofs and has therefore its own dedicated
|
|
||||||
section here.
|
|
||||||
*)
|
|
||||||
|
|
||||||
Lemma tm_step_consecutive_identical :
|
|
||||||
forall (n : nat) (hd a tl : list bool) (b : bool),
|
|
||||||
tm_step n = hd ++ (b::b::nil) ++ tl
|
|
||||||
-> odd (length hd) = true.
|
|
||||||
Proof.
|
|
||||||
intros n hd a tl b. intro H.
|
|
||||||
assert (J: {even (length hd) = false} + { ~ (even (length hd)) = false}).
|
|
||||||
apply bool_dec. destruct J.
|
|
||||||
- rewrite <- Nat.negb_even. rewrite e. reflexivity.
|
|
||||||
- apply not_false_is_true in n0.
|
|
||||||
assert (K: count_occ Bool.bool_dec hd true
|
|
||||||
= count_occ Bool.bool_dec hd false).
|
|
||||||
generalize n0. generalize H. apply tm_step_count_occ.
|
|
||||||
assert (L: count_occ Bool.bool_dec (hd ++ [b;b]) true
|
|
||||||
= count_occ Bool.bool_dec (hd ++ [b;b]) false).
|
|
||||||
assert (even (length (hd ++ [b;b])) = true).
|
|
||||||
rewrite app_length. rewrite Nat.even_add_even. assumption.
|
|
||||||
simpl. apply Nat.EvenT_Even. apply Nat.even_EvenT. reflexivity.
|
|
||||||
generalize H0. rewrite app_assoc in H. generalize H.
|
|
||||||
apply tm_step_count_occ.
|
|
||||||
rewrite count_occ_app in L. rewrite count_occ_app in L.
|
|
||||||
rewrite K in L. rewrite Nat.add_cancel_l in L.
|
|
||||||
destruct b. simpl in L. inversion L. simpl in L. inversion L.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
|
|
||||||
Lemma tm_step_consecutive_identical' :
|
|
||||||
forall (n : nat) (hd a tl : list bool) (b1 b2 : bool),
|
|
||||||
tm_step n = hd ++ (b1::b1::nil) ++ a ++ (b2::b2::nil) ++ tl
|
|
||||||
-> even (length a) = true.
|
|
||||||
Proof.
|
|
||||||
intros n hd a tl b1 b2. intros H.
|
|
||||||
assert (Nat.odd (length hd) = true).
|
|
||||||
generalize H. apply tm_step_consecutive_identical. apply hd.
|
|
||||||
rewrite app_assoc in H. rewrite app_assoc in H.
|
|
||||||
assert (Nat.odd (length ((hd ++ [b1;b1])++a)) = true).
|
|
||||||
generalize H. apply tm_step_consecutive_identical. apply hd.
|
|
||||||
rewrite app_length in H1. rewrite Nat.odd_add in H1.
|
|
||||||
rewrite app_length in H1. rewrite Nat.odd_add in H1. rewrite H0 in H1.
|
|
||||||
replace (Nat.odd (length a)) with (negb (Nat.even (length a))) in H1.
|
|
||||||
destruct (even (length a)). reflexivity. inversion H1.
|
|
||||||
reflexivity.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
|
|
||||||
(**
|
(**
|
||||||
The following lemmas and theorems are all related to
|
The following lemmas and theorems are all related to
|
||||||
squares of odd length in the Thue-Morse sequence.
|
squares of odd length in the Thue-Morse sequence.
|
||||||
|
Loading…
Reference in New Issue
Block a user