Update
This commit is contained in:
parent
099a6a85e9
commit
e9dac82ba3
28
thue-morse.v
28
thue-morse.v
@ -839,7 +839,7 @@ Proof.
|
|||||||
apply Nat.lt_0_succ.
|
apply Nat.lt_0_succ.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma tm_step_next_range' :
|
Lemma tm_step_next_range :
|
||||||
forall (n k : nat) (b : bool),
|
forall (n k : nat) (b : bool),
|
||||||
nth_error (tm_step n) k = Some b -> nth_error (tm_step (S n)) k = Some b.
|
nth_error (tm_step n) k = Some b -> nth_error (tm_step (S n)) k = Some b.
|
||||||
Proof.
|
Proof.
|
||||||
@ -860,7 +860,7 @@ Proof.
|
|||||||
generalize H. apply nth_error_nth'.
|
generalize H. apply nth_error_nth'.
|
||||||
rewrite H0 in IHm. symmetry in IHm.
|
rewrite H0 in IHm. symmetry in IHm.
|
||||||
rewrite H0. symmetry. generalize IHm.
|
rewrite H0. symmetry. generalize IHm.
|
||||||
apply tm_step_next_range'.
|
apply tm_step_next_range.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Theorem tm_step_stable : forall (n m k : nat),
|
Theorem tm_step_stable : forall (n m k : nat),
|
||||||
@ -885,7 +885,7 @@ Proof.
|
|||||||
reflexivity.
|
reflexivity.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma tm_step_next_range2'' :
|
Lemma tm_step_next_range2 :
|
||||||
forall (n k : nat),
|
forall (n k : nat),
|
||||||
k < 2^n -> nth_error (tm_step n) k <> nth_error (tm_step (S n)) (k + 2^n).
|
k < 2^n -> nth_error (tm_step n) k <> nth_error (tm_step (S n)) (k + 2^n).
|
||||||
Proof.
|
Proof.
|
||||||
@ -902,7 +902,7 @@ Proof.
|
|||||||
rewrite tm_size_power2. apply Nat.le_add_l.
|
rewrite tm_size_power2. apply Nat.le_add_l.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma tm_step_next_range2_neighbor' : forall (n k : nat),
|
Lemma tm_step_next_range2_neighbor : forall (n k : nat),
|
||||||
S k < 2^n ->
|
S k < 2^n ->
|
||||||
nth_error (tm_step n) k = nth_error (tm_step n) (S k)
|
nth_error (tm_step n) k = nth_error (tm_step n) (S k)
|
||||||
<->
|
<->
|
||||||
@ -913,9 +913,9 @@ Proof.
|
|||||||
(* Part 1: preamble *)
|
(* Part 1: preamble *)
|
||||||
assert (I := H). apply Nat.lt_succ_l in I.
|
assert (I := H). apply Nat.lt_succ_l in I.
|
||||||
assert (nth_error (tm_step n) k <> nth_error (tm_step (S n)) (k + 2^n)).
|
assert (nth_error (tm_step n) k <> nth_error (tm_step (S n)) (k + 2^n)).
|
||||||
generalize I. apply tm_step_next_range2''.
|
generalize I. apply tm_step_next_range2.
|
||||||
assert (nth_error (tm_step n) (S k) <> nth_error (tm_step (S n)) (S k + 2^n)).
|
assert (nth_error (tm_step n) (S k) <> nth_error (tm_step (S n)) (S k + 2^n)).
|
||||||
generalize H. apply tm_step_next_range2''.
|
generalize H. apply tm_step_next_range2.
|
||||||
assert (K: S k + 2^n < 2^(S n)). simpl. rewrite Nat.add_0_r.
|
assert (K: S k + 2^n < 2^(S n)). simpl. rewrite Nat.add_0_r.
|
||||||
rewrite <- Nat.add_succ_l. rewrite <- Nat.add_lt_mono_r. apply H.
|
rewrite <- Nat.add_succ_l. rewrite <- Nat.add_lt_mono_r. apply H.
|
||||||
assert (J := K). rewrite Nat.add_succ_l in J. apply Nat.lt_succ_l in J.
|
assert (J := K). rewrite Nat.add_succ_l in J. apply Nat.lt_succ_l in J.
|
||||||
@ -986,13 +986,13 @@ Proof.
|
|||||||
split.
|
split.
|
||||||
- induction m.
|
- induction m.
|
||||||
+ intros L. rewrite Nat.add_0_r. rewrite Nat.add_0_r.
|
+ intros L. rewrite Nat.add_0_r. rewrite Nat.add_0_r.
|
||||||
apply tm_step_next_range2_neighbor'. rewrite <- Nat.add_succ_l.
|
apply tm_step_next_range2_neighbor. rewrite <- Nat.add_succ_l.
|
||||||
apply K.
|
apply K.
|
||||||
rewrite <- tm_step_next_range2_neighbor'.
|
rewrite <- tm_step_next_range2_neighbor.
|
||||||
apply tm_step_next_range2_neighbor'. rewrite <- Nat.add_succ_l.
|
apply tm_step_next_range2_neighbor. rewrite <- Nat.add_succ_l.
|
||||||
apply K.
|
apply K.
|
||||||
rewrite <- tm_step_next_range2_neighbor'. rewrite <- Nat.add_succ_l.
|
rewrite <- tm_step_next_range2_neighbor. rewrite <- Nat.add_succ_l.
|
||||||
rewrite <- tm_step_next_range2_neighbor'. apply L.
|
rewrite <- tm_step_next_range2_neighbor. apply L.
|
||||||
apply H. rewrite <- Nat.add_succ_l. apply K.
|
apply H. rewrite <- Nat.add_succ_l. apply K.
|
||||||
rewrite <- Nat.add_succ_l. apply K.
|
rewrite <- Nat.add_succ_l. apply K.
|
||||||
+ intros L.
|
+ intros L.
|
||||||
@ -1007,7 +1007,7 @@ Proof.
|
|||||||
generalize H0. generalize H. apply Nat.lt_trans.
|
generalize H0. generalize H. apply Nat.lt_trans.
|
||||||
assert (H1 := H0). apply Nat.lt_succ_l in H1.
|
assert (H1 := H0). apply Nat.lt_succ_l in H1.
|
||||||
|
|
||||||
rewrite <- tm_step_next_range2_neighbor'.
|
rewrite <- tm_step_next_range2_neighbor.
|
||||||
|
|
||||||
assert (nth_error (tm_step n) k = nth_error (tm_step (S n + m)) k).
|
assert (nth_error (tm_step n) k = nth_error (tm_step (S n + m)) k).
|
||||||
generalize H1. generalize I. apply tm_step_stable.
|
generalize H1. generalize I. apply tm_step_stable.
|
||||||
@ -1018,7 +1018,7 @@ Proof.
|
|||||||
apply H0.
|
apply H0.
|
||||||
- induction m.
|
- induction m.
|
||||||
+ intros L. rewrite Nat.add_0_r in L. rewrite Nat.add_0_r in L.
|
+ intros L. rewrite Nat.add_0_r in L. rewrite Nat.add_0_r in L.
|
||||||
apply tm_step_next_range2_neighbor'. apply H. apply L.
|
apply tm_step_next_range2_neighbor. apply H. apply L.
|
||||||
+ intros L.
|
+ intros L.
|
||||||
rewrite Nat.add_succ_r in L. rewrite Nat.add_succ_r in L.
|
rewrite Nat.add_succ_r in L. rewrite Nat.add_succ_r in L.
|
||||||
|
|
||||||
@ -1030,7 +1030,7 @@ Proof.
|
|||||||
generalize H0. generalize H. apply Nat.lt_trans.
|
generalize H0. generalize H. apply Nat.lt_trans.
|
||||||
assert (H1 := H0). apply Nat.lt_succ_l in H1.
|
assert (H1 := H0). apply Nat.lt_succ_l in H1.
|
||||||
|
|
||||||
rewrite <- tm_step_next_range2_neighbor' in L.
|
rewrite <- tm_step_next_range2_neighbor in L.
|
||||||
|
|
||||||
assert (nth_error (tm_step n) k = nth_error (tm_step (S n + m)) k).
|
assert (nth_error (tm_step n) k = nth_error (tm_step (S n + m)) k).
|
||||||
generalize H1. generalize I. apply tm_step_stable.
|
generalize H1. generalize I. apply tm_step_stable.
|
||||||
|
Loading…
Reference in New Issue
Block a user