Update
This commit is contained in:
parent
c34cd4da2e
commit
dfe275c9b0
20
thue-morse.v
20
thue-morse.v
@ -972,14 +972,15 @@ Qed.
|
||||
|
||||
Lemma tm_step_add_range2_neighbor : forall (n m k : nat),
|
||||
S k < 2^n ->
|
||||
eqb (nth k (tm_step n) false) (nth (S k) (tm_step n) false)
|
||||
= eqb
|
||||
(nth (k + 2^(n+m)) (tm_step (S n+m)) false) (nth (S k + 2^(n+m)) (tm_step (S n+m)) false).
|
||||
eqb (nth k (tm_step n) false)
|
||||
(nth (S k) (tm_step n) false)
|
||||
= eqb (nth (k + 2^(n+m)) (tm_step (S n+m)) false)
|
||||
(nth (S k + 2^(n+m)) (tm_step (S n+m)) false).
|
||||
Proof.
|
||||
intros n m k. intros H.
|
||||
induction m.
|
||||
- rewrite Nat.add_0_r. rewrite Nat.add_0_r. apply tm_step_next_range2_neighbor.
|
||||
apply H.
|
||||
- rewrite Nat.add_0_r. rewrite Nat.add_0_r.
|
||||
apply tm_step_next_range2_neighbor. apply H.
|
||||
- rewrite IHm. rewrite Nat.add_succ_r. rewrite Nat.add_succ_r.
|
||||
|
||||
assert (I : eqb (nth k (tm_step (S n + m)) false)
|
||||
@ -1008,7 +1009,8 @@ Proof.
|
||||
|
||||
assert (nth_error (tm_step n) k = Some(nth k (tm_step n) false)).
|
||||
generalize J. rewrite <- tm_size_power2. apply nth_error_nth'.
|
||||
assert (nth_error (tm_step (S n + m)) k = Some(nth k (tm_step (S n + m)) false)).
|
||||
assert (nth_error (tm_step (S n + m)) k
|
||||
= Some(nth k (tm_step (S n + m)) false)).
|
||||
generalize K. rewrite <- tm_size_power2. apply nth_error_nth'.
|
||||
assert (nth_error (tm_step n) k = nth_error (tm_step (S n + m)) k).
|
||||
generalize K. generalize J. apply tm_step_stable.
|
||||
@ -1016,9 +1018,11 @@ Proof.
|
||||
|
||||
assert (nth_error (tm_step n) (S k) = Some(nth (S k) (tm_step n) false)).
|
||||
generalize H. rewrite <- tm_size_power2. apply nth_error_nth'.
|
||||
assert (nth_error (tm_step (S n + m)) (S k) = Some(nth (S k) (tm_step (S n + m)) false)).
|
||||
assert (nth_error (tm_step (S n + m)) (S k)
|
||||
= Some(nth (S k) (tm_step (S n + m)) false)).
|
||||
generalize U. rewrite <- tm_size_power2. apply nth_error_nth'.
|
||||
assert (nth_error (tm_step n) (S k) = nth_error (tm_step (S n + m)) (S k)).
|
||||
assert (nth_error (tm_step n) (S k)
|
||||
= nth_error (tm_step (S n + m)) (S k)).
|
||||
generalize U. generalize H. apply tm_step_stable.
|
||||
rewrite H3 in H6. rewrite H5 in H6. inversion H6. rewrite H8. reflexivity.
|
||||
Qed.
|
||||
|
Loading…
Reference in New Issue
Block a user