This commit is contained in:
Thomas Baruchel 2023-01-14 21:37:37 +01:00
parent 3c2f4121e1
commit ddedf950b6

View File

@ -329,71 +329,6 @@ Qed.
prefix being odd or even in front of a squared pattern.
*)
Lemma tm_step_odd_prefix_square_3 : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ a ++ tl
-> length a = 3 -> even (length hd) = false.
Proof.
intros n hd a tl. intros H I.
assert (J: Nat.even (length hd) || Nat.odd (length hd) = true).
apply Nat.orb_even_odd. apply orb_prop in J. destruct J.
assert (Z: a = [true;false;true] \/ a = [false;true;false]).
destruct a. inversion I. destruct a. inversion I.
destruct a. inversion I. destruct a.
- destruct b; destruct b0; destruct b1.
+ replace ([true;true;true] ++ [true;true;true] ++ tl)
with ([true;true] ++ [true] ++ [true;true] ++ [true] ++ tl) in H.
apply tm_step_consecutive_identical' in H. inversion H.
reflexivity.
+ replace ([true;true;false] ++ [true;true;false] ++ tl)
with ([true;true] ++ [false] ++ [true;true] ++ [false] ++ tl) in H.
apply tm_step_consecutive_identical' in H. inversion H.
reflexivity.
+ left. reflexivity.
+ replace (hd ++ [true;false;false] ++ [true;false;false] ++ tl)
with ((hd ++ [true]) ++ [false; false] ++ [true] ++ [false;false] ++ tl) in H.
apply tm_step_consecutive_identical' in H. inversion H.
rewrite <- app_assoc. reflexivity.
+ replace (hd ++ [false;true;true] ++ [false;true;true] ++ tl)
with ((hd ++ [false]) ++ [true; true] ++ [false] ++ [true;true] ++ tl) in H.
apply tm_step_consecutive_identical' in H. inversion H.
rewrite <- app_assoc. reflexivity.
+ right. reflexivity.
+ replace ([false;false;true] ++ [false;false;true] ++ tl)
with ([false;false] ++ [true] ++ [false;false] ++ [true] ++ tl) in H.
apply tm_step_consecutive_identical' in H. inversion H.
reflexivity.
+ replace ([false;false;false] ++ [false;false;false] ++ tl)
with ([false;false] ++ [false] ++ [false;false] ++ [false] ++ tl) in H.
apply tm_step_consecutive_identical' in H. inversion H.
reflexivity.
- inversion I.
- assert (K: count_occ Bool.bool_dec hd true
= count_occ Bool.bool_dec hd false).
generalize H0. generalize H. apply tm_step_count_occ.
destruct Z; rewrite H1 in H.
replace (hd ++ [true;false;true] ++ [true;false;true] ++ tl)
with ((hd ++ [true;false;true;true]) ++ [false;true] ++ tl) in H.
assert (even (length (hd ++ [true;false;true;true])) = true).
rewrite app_length. rewrite Nat.even_add. rewrite H0. reflexivity.
assert (M: count_occ Bool.bool_dec (hd ++ [true;false;true;true]) true
= count_occ Bool.bool_dec (hd ++ [true;false;true;true]) false).
generalize H2. generalize H. apply tm_step_count_occ.
rewrite count_occ_app in M. symmetry in M. rewrite count_occ_app in M.
rewrite K in M. rewrite Nat.add_cancel_l in M. inversion M.
rewrite <- app_assoc. reflexivity.
replace (hd ++ [false;true;false] ++ [false;true;false] ++ tl)
with ((hd ++ [false;true;false;false]) ++ [true;false] ++ tl) in H.
assert (even (length (hd ++ [false;true;false;false])) = true).
rewrite app_length. rewrite Nat.even_add. rewrite H0. reflexivity.
assert (M: count_occ Bool.bool_dec (hd ++ [false;true;false;false]) true
= count_occ Bool.bool_dec (hd ++ [false;true;false;false]) false).
generalize H2. generalize H. apply tm_step_count_occ.
rewrite count_occ_app in M. symmetry in M. rewrite count_occ_app in M.
rewrite K in M. rewrite Nat.add_cancel_l in M. inversion M.
rewrite <- app_assoc. reflexivity.
- rewrite <- Nat.negb_odd. rewrite H0. reflexivity.
Qed.
Lemma tm_step_odd_prefix_square : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ a ++ tl
-> odd (length a) = true -> even (length hd) = false.
@ -401,18 +336,59 @@ Proof.
intros n hd a tl. intros H I.
assert (length a < 4). generalize I. generalize H. apply tm_step_odd_square.
destruct a. inversion I. destruct a.
rewrite <- negb_true_iff. rewrite Nat.negb_even.
generalize H. apply tm_step_consecutive_identical.
destruct a. inversion I.
destruct a.
apply tm_step_odd_prefix_square_3 with (n := n) (a := [b;b0;b1]) (tl := tl).
assumption. reflexivity.
simpl in H0.
rewrite <- Nat.succ_lt_mono in H0.
rewrite <- Nat.succ_lt_mono in H0.
rewrite <- Nat.succ_lt_mono in H0.
rewrite <- Nat.succ_lt_mono in H0.
apply Nat.nlt_0_r in H0. contradiction H0.
- rewrite <- negb_true_iff. rewrite Nat.negb_even.
generalize H. apply tm_step_consecutive_identical.
- destruct a. inversion I. destruct a.
assert (J: {b0 = b1} + {b0 <> b1}). apply bool_dec. destruct J.
rewrite e in H.
replace (hd ++ [b;b1;b1] ++ [b;b1;b1] ++ tl)
with ((hd ++ [b]) ++ [b1;b1] ++ [b] ++ [b1;b1] ++ tl) in H.
assert (K: even (length [b]) = true). generalize H.
apply tm_step_consecutive_identical'. inversion K.
rewrite <- app_assoc. reflexivity.
assert (J: {b = b0} + {b <> b0}). apply bool_dec. destruct J.
rewrite e in H.
replace (hd ++ [b0;b0;b1] ++ [b0;b0;b1] ++ tl)
with (hd ++ [b0;b0] ++ [b1] ++ [b0;b0] ++ [b1] ++ tl) in H.
assert (K: even (length [b1]) = true). generalize H.
apply tm_step_consecutive_identical'. inversion K.
reflexivity.
assert (J: {b = b1} + {b <> b1}). apply bool_dec. destruct J.
rewrite e in H.
assert (J: Nat.even (length hd) || Nat.odd (length hd) = true).
apply Nat.orb_even_odd. apply orb_prop in J. destruct J.
assert (K: count_occ Bool.bool_dec hd true
= count_occ Bool.bool_dec hd false).
generalize H1. generalize H. apply tm_step_count_occ.
assert (L: count_occ Bool.bool_dec (hd ++ [b1;b0;b1;b1]) true
= count_occ Bool.bool_dec (hd ++ [b1;b0;b1;b1]) false).
assert (M: even (length (hd ++ [b1;b0;b1;b1])) = true).
rewrite app_length. rewrite Nat.even_add. rewrite H1. reflexivity.
replace (hd ++ [b1;b0;b1] ++ [b1;b0;b1] ++ tl)
with ((hd ++ [b1;b0;b1;b1]) ++ [b0;b1] ++ tl) in H.
generalize M. generalize H. apply tm_step_count_occ.
rewrite <- app_assoc. reflexivity.
rewrite count_occ_app in L. symmetry in L. rewrite count_occ_app in L.
rewrite K in L. rewrite Nat.add_cancel_l in L.
destruct b0; destruct b1; inversion L.
rewrite <- Nat.negb_odd. rewrite H1. reflexivity.
destruct b; destruct b0; destruct b1.
contradiction n0. contradiction n2. contradiction n1. contradiction n2.
contradiction n0. reflexivity.
contradiction n0. contradiction n2. reflexivity.
contradiction n1. reflexivity. contradiction n0. reflexivity.
simpl in H0.
rewrite <- Nat.succ_lt_mono in H0.
rewrite <- Nat.succ_lt_mono in H0.
rewrite <- Nat.succ_lt_mono in H0.
rewrite <- Nat.succ_lt_mono in H0.
apply Nat.nlt_0_r in H0. contradiction H0.
Qed.