This commit is contained in:
Thomas Baruchel 2023-11-23 11:43:14 +01:00
parent 2eb631de5e
commit d3cb1fc175

View File

@ -604,6 +604,52 @@ Proof.
Qed. Qed.
Theorem subsequence_split {X: Type} :
forall (u v w: list X),
subsequence (u++v) w
-> (exists a b, w = a++b /\ (subsequence u a) /\ subsequence v b).
Proof.
intros u v w. intro H.
apply subsequence_eq_def_1 in H.
destruct H. destruct H.
assert (forall (b: list bool) (u v: list X),
length b = length (u++v)
-> exists x y, b = x++y /\ length x = length u /\ length y = length v).
intros b u0 v0. intro I.
rewrite app_length in I.
exists (firstn (length u0) b). exists (skipn (length u0) b).
split. symmetry. apply firstn_skipn. split.
rewrite firstn_length_le. reflexivity. rewrite I.
apply PeanoNat.Nat.le_add_r. rewrite skipn_length.
rewrite I. rewrite Nat.add_sub_swap. rewrite PeanoNat.Nat.sub_diag.
reflexivity. apply le_n.
apply H1 in H. destruct H. destruct H. destruct H. destruct H2.
exists (map snd (filter fst (combine x0 u))).
exists (map snd (filter fst (combine x1 v))).
rewrite <- map_app. rewrite <- filter_app.
assert (L: forall (g i: list bool) (h j: list X), length g = length h
-> (combine g h) ++ (combine i j) = combine (g++i) (h++j)).
intro g. induction g; intros i h j; intro I.
symmetry in I. apply length_zero_iff_nil in I. rewrite I.
reflexivity.
destruct h. apply PeanoNat.Nat.neq_succ_0 in I. contradiction.
simpl. rewrite IHg. reflexivity. inversion I. reflexivity.
rewrite L. rewrite <- H. split. assumption. split.
apply subsequence_eq_def_3. apply subsequence_eq_def_2.
exists x0. split. assumption. reflexivity.
apply subsequence_eq_def_3. apply subsequence_eq_def_2.
exists x1. split. assumption. reflexivity.
assumption.
Qed.
(** * Tests (** * Tests
*) *)