Update
This commit is contained in:
parent
4b3495308e
commit
d35cc5e62d
32
thue-morse.v
32
thue-morse.v
@ -903,6 +903,7 @@ Proof.
|
|||||||
rewrite tm_size_power2. apply Nat.le_add_l.
|
rewrite tm_size_power2. apply Nat.le_add_l.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
(*
|
||||||
Theorem tm_fullrange : forall (n m k : nat),
|
Theorem tm_fullrange : forall (n m k : nat),
|
||||||
k < 2^n -> k < 2^m -> nth_error (tm_step n) k = nth_error (tm_step m) k.
|
k < 2^n -> k < 2^m -> nth_error (tm_step n) k = nth_error (tm_step m) k.
|
||||||
Proof.
|
Proof.
|
||||||
@ -911,13 +912,26 @@ Proof.
|
|||||||
- destruct m. reflexivity. simpl in H. rewrite Nat.lt_1_r in H. rewrite H.
|
- destruct m. reflexivity. simpl in H. rewrite Nat.lt_1_r in H. rewrite H.
|
||||||
replace (tm_step (S m)) with (false :: tl (tm_step (S m))). reflexivity.
|
replace (tm_step (S m)) with (false :: tl (tm_step (S m))). reflexivity.
|
||||||
symmetry. apply tm_step_head_1.
|
symmetry. apply tm_step_head_1.
|
||||||
- induction m. simpl in H0. rewrite Nat.lt_1_r in H0. rewrite H0.
|
- (* prouver d'abord que k < 2^n !!! *)
|
||||||
|
assert (I := H0). rewrite <- tm_size_power2 in I.
|
||||||
|
rewrite <- nth_error_Some in I.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
- destruct m. simpl in H0. rewrite Nat.lt_1_r in H0. rewrite H0.
|
||||||
replace (tm_step (S n)) with (false :: tl (tm_step (S n))). reflexivity.
|
replace (tm_step (S n)) with (false :: tl (tm_step (S n))). reflexivity.
|
||||||
symmetry. apply tm_step_head_1.
|
symmetry. apply tm_step_head_1.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
assert (nth_error (tm_step (S n)) k = nth_error (tm_step m) k).
|
||||||
|
apply IHm.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -936,6 +950,22 @@ nth_error_nth':
|
|||||||
forall [A : Type] (l : list A) [n : nat] (d : A),
|
forall [A : Type] (l : list A) [n : nat] (d : A),
|
||||||
n < length l -> nth_error l n = Some (nth n l d)
|
n < length l -> nth_error l n = Some (nth n l d)
|
||||||
|
|
||||||
|
*)
|
||||||
|
|
||||||
|
Lemma tm_add_range : forall (n m k : nat),
|
||||||
|
k < 2^n -> nth_error (tm_step n) k = nth_error (tm_step (n+m)) k.
|
||||||
|
Proof.
|
||||||
|
intros n m k. intros H.
|
||||||
|
induction m.
|
||||||
|
- rewrite Nat.add_comm. reflexivity.
|
||||||
|
- rewrite Nat.add_succ_r. rewrite <- tm_size_power2 in H.
|
||||||
|
assert (nth_error (tm_step n) k = Some (nth k (tm_step n) false)).
|
||||||
|
generalize H. apply nth_error_nth'.
|
||||||
|
rewrite H0 in IHm. symmetry in IHm.
|
||||||
|
rewrite H0. symmetry. generalize IHm.
|
||||||
|
apply tm_step_next_range'.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user