This commit is contained in:
Thomas Baruchel 2023-10-21 14:44:23 +02:00
parent a949320a6f
commit d018b6d30a
1 changed files with 92 additions and 67 deletions

View File

@ -1,6 +1,7 @@
Require Import Nat.
Require Import PeanoNat.
Require Import List.
Require Import Lia.
Import ListNotations.
(*
@ -41,73 +42,6 @@ Proof.
Qed.
Lemma perm_max_alt : forall (l: list nat),
permutation l -> (forall k, In k l -> k < length l).
Proof.
intro l. intro H. intro k. intro I.
apply perm_seq_2 in H. apply incl_Forall_in_iff in H.
rewrite Forall_forall in H. apply H in I. apply in_seq in I.
destruct I. assumption.
Qed.
Lemma perm_max : forall (l: list nat),
permutation l -> l <> nil -> In (length l - 1) l.
Proof.
intro l. intros H I. unfold permutation in H. apply H.
rewrite Nat.sub_1_r. apply Nat.lt_pred_l.
destruct l. contradiction I. reflexivity. easy.
Qed.
Lemma perm_max_split : forall (l: list nat),
permutation l -> l <> nil
-> exists l1 l2, l = l1 ++ [length(l) - 1] ++ l2.
Proof.
intro l. intros H I.
assert (J: In (length l - 1) l). apply perm_max; assumption.
apply In_nth with (d := 0) in J. destruct J. destruct H0.
apply nth_split with (d := 0) in H0. destruct H0. destruct H0.
destruct H0. exists x0. exists x1. rewrite H1 in H0. assumption.
Qed.
Lemma perm_max_remove : forall (l: list nat),
permutation l -> l <> nil
-> exists l1 l2, ((l = l1 ++ [length(l) - 1] ++ l2)
/\ permutation (l1++l2)).
Proof.
intro l. intros H I.
assert (J: exists l1 l2, l = l1 ++ [length l - 1] ++ l2).
apply perm_max_split; assumption.
destruct J. destruct H0. exists x. exists x0. split. assumption.
assert (J: forall k, k < length l - 1 -> In k l -> In k (x ++ x0)).
intro k. intros. rewrite H0 in H2. apply in_elt_inv in H2.
destruct H2. rewrite H2 in H1. apply Nat.lt_irrefl in H1. contradiction H1.
assumption. unfold permutation. intros.
assert (k < length l - 1). rewrite H0.
rewrite app_length. simpl. rewrite <- Nat.add_sub_assoc.
rewrite Nat.sub_1_r. rewrite Nat.pred_succ. rewrite <- app_length.
assumption. rewrite Nat.le_succ_l. apply Nat.lt_0_succ.
apply J. assumption. apply H. apply Nat.lt_lt_succ_r in H2.
rewrite Nat.sub_1_r in H2. rewrite Nat.succ_pred in H2.
assumption. destruct l. contradiction I. reflexivity. easy.
Qed.
Lemma perm_max_insert : forall (l1 l2: list nat),
permutation (l1 ++ l2) -> permutation (l1 ++ [ length (l1++l2) ] ++ l2).
Proof.
intros l1 l2. intro H. unfold permutation. intro k. intro I.
rewrite app_length in I. simpl in I. rewrite Nat.add_succ_r in I.
rewrite Nat.lt_succ_r in I. rewrite <- app_length in I.
apply Nat.le_lteq in I. destruct I. apply H in H0.
apply in_app_iff in H0. destruct H0. rewrite in_app_iff. left.
assumption. rewrite in_app_iff. right. apply in_cons. assumption.
rewrite <- H0. rewrite in_app_iff. right. apply in_eq.
Qed.
Lemma perm_incl_incl : forall (l: list nat) (n: nat),
incl l (seq 0 n) -> incl (seq 0 n) l -> NoDup l -> permutation l.
Proof.
@ -164,12 +98,103 @@ Qed.
Lemma perm_max : forall (l: list nat),
permutation l -> l <> nil -> In (length l - 1) l.
Proof.
intro l. intros H I. unfold permutation in H. apply H.
rewrite Nat.sub_1_r. apply Nat.lt_pred_l.
destruct l. contradiction I. reflexivity. easy.
Qed.
Lemma perm_max_alt : forall (l: list nat),
permutation l -> (forall k, In k l -> k < length l).
Proof.
intro l. intro H. intro k. intro I.
apply perm_seq_2 in H. apply incl_Forall_in_iff in H.
rewrite Forall_forall in H. apply H in I. apply in_seq in I.
destruct I. assumption.
Qed.
Lemma perm_max_split : forall (l: list nat),
permutation l -> l <> nil
-> exists l1 l2, l = l1 ++ [length(l) - 1] ++ l2.
Proof.
intro l. intros H I.
assert (J: In (length l - 1) l). apply perm_max; assumption.
apply In_nth with (d := 0) in J. destruct J. destruct H0.
apply nth_split with (d := 0) in H0. destruct H0. destruct H0.
destruct H0. exists x0. exists x1. rewrite H1 in H0. assumption.
Qed.
Lemma perm_max_remove : forall (l: list nat),
permutation l -> l <> nil
-> exists l1 l2, ((l = l1 ++ [length(l) - 1] ++ l2)
/\ permutation (l1++l2)).
Proof.
intro l. intros H I.
assert (J: exists l1 l2, l = l1 ++ [length l - 1] ++ l2).
apply perm_max_split; assumption.
destruct J. destruct H0. exists x. exists x0. split. assumption.
assert (J: forall k, k < length l - 1 -> In k l -> In k (x ++ x0)).
intro k. intros. rewrite H0 in H2. apply in_elt_inv in H2.
destruct H2. rewrite H2 in H1. apply Nat.lt_irrefl in H1. contradiction H1.
assumption. unfold permutation. intros.
assert (k < length l - 1). rewrite H0.
rewrite app_length. simpl. rewrite <- Nat.add_sub_assoc.
rewrite Nat.sub_1_r. rewrite Nat.pred_succ. rewrite <- app_length.
assumption. rewrite Nat.le_succ_l. apply Nat.lt_0_succ.
apply J. assumption. apply H. apply Nat.lt_lt_succ_r in H2.
rewrite Nat.sub_1_r in H2. rewrite Nat.succ_pred in H2.
assumption. destruct l. contradiction I. reflexivity. easy.
Qed.
Lemma perm_max_insert : forall (l1 l2: list nat),
permutation (l1 ++ l2) -> permutation (l1 ++ [ length (l1++l2) ] ++ l2).
Proof.
intros l1 l2. intro H.
(* first part of the proof *)
unfold permutation. intro k. intro I.
rewrite app_length in I. simpl in I. rewrite Nat.add_succ_r in I.
rewrite Nat.lt_succ_r in I. rewrite <- app_length in I.
apply Nat.le_lteq in I. destruct I. apply H in H0.
apply in_app_iff in H0. destruct H0. rewrite in_app_iff. left.
assumption. rewrite in_app_iff. right. apply in_cons. assumption.
rewrite <- H0. rewrite in_app_iff. right. apply in_eq.
Qed.
Lemma perm_max_insert_alt : forall (l1 l2: list nat),
permutation (l1 ++ [ length (l1++l2) ] ++ l2) -> permutation (l1 ++ l2).
Proof.
intros l1 l2. intro H.
assert (I: incl (seq 0 (length (l1++l2))) (l1++l2)).
assert (incl ([length (l1++l2)]++l2++l1) (l1++[length (l1++l2)]++l2)).
unfold incl. intro a. intro J. rewrite app_assoc in J.
rewrite in_app_iff. rewrite in_app_iff in J. destruct J.
right. assumption. left. assumption.
apply incl_app_inv in H0. destruct H0. apply incl_app_inv in H1.
destruct H1.
assert (incl (l1++l2) (l1 ++ [length (l1 ++ l2)] ++ l2)).
apply incl_app; assumption.
assert (incl ([length (l1++l2)]++l1++l2) (l1 ++ [length (l1 ++ l2)] ++ l2)).
apply incl_app; assumption.
apply incl_Add_inv
with (a := length (l1++l2)) (v := l1++[length (l1++l2)]++l2).
rewrite in_seq. lia. (* TODO *)
replace (length (l1 ++ l2) :: seq 0 (length (l1 ++ l2)))
with ([length (l1 ++ l2)] ++ seq 0 (length (l1 ++ l2))).
apply incl_app. easy.
apply perm_seq_1 in H. rewrite app_length in H. simpl in H.
rewrite Nat.add_succ_r in H. rewrite seq_S in H. apply incl_app_inv in H.
destruct H. rewrite app_length at 1. assumption.
easy. apply Add_app.
unfold incl in I. unfold permutation.
intro k. intro. apply I. apply in_seq. lia. (* TODO *)
Qed.