This commit is contained in:
Thomas Baruchel 2022-12-07 21:09:16 +01:00
parent 7886dff697
commit cf667eb25b

View File

@ -1117,6 +1117,92 @@ Proof.
+ simpl in H. symmetry in H. apply Bool.diff_true_false in H. contradiction H.
Qed.
(* TODO: écrire deux lemmes, avec
- une implication vers la première moitié de la construction suivante
- une implication vers la seconde moitié de la construction suivante
ENSUITE : voir si on peut itérer sur le facteur multiplicatif k *)
Lemma tm_step_add_small_power :
forall (n m k j : nat),
0 < k -> k * 2^m < 2^n -> j < m
-> nth_error (tm_step n) (k * 2^m) <> nth_error (tm_step n) (k * 2^m + 2^j)
-> nth_error (tm_step (S n)) ((S k) * 2^m) <> nth_error (tm_step (S n)) ((S k) * 2^m + 2^j).
Proof.
intros n m k j. intros G H I J.
assert (N0: 2^m < 2^n). assert (2^m <= k * 2^m).
replace (k * 2^m) with (1*2^m + (k-1)*2^m).
simpl. rewrite Nat.add_0_r. apply Nat.le_add_r.
rewrite <- Nat.mul_add_distr_r. rewrite Nat.add_1_l.
rewrite <- Nat.sub_succ_l. rewrite <- Nat.add_1_r. rewrite Nat.add_sub.
reflexivity. rewrite Nat.le_succ_l. apply G.
generalize H. generalize H0. apply Nat.le_lt_trans.
assert (N1: m < n). apply Nat.pow_lt_mono_r_iff in N0. apply N0.
apply Nat.lt_1_2.
assert (N2: 0 < m). assert (0 <= j). apply Nat.le_0_l.
generalize I. generalize H0. apply Nat.le_lt_trans.
assert (N3: 0 < n). destruct k. apply Nat.lt_irrefl in G. contradiction G.
assert (2^0 <= (S k) * (2^m)). simpl. assert (1 <= 2^m).
replace (1) with (2^0) at 1. apply Nat.pow_le_mono_r. easy.
apply Nat.le_0_l. reflexivity.
assert (2^m <= 2^m + k*2^m). apply Nat.le_add_r.
generalize H1. generalize H0. apply Nat.le_trans.
assert (2^0 < 2^n). generalize H. generalize H0.
apply Nat.le_lt_trans.
rewrite <- Nat.pow_lt_mono_r_iff in H1.
apply H1. apply Nat.lt_1_2.
assert (N4: 0 < m-j). rewrite Nat.add_lt_mono_r with (p := j). simpl.
replace (m-j+j) with (m). apply I. symmetry. apply Nat.sub_add.
generalize I. apply Nat.lt_le_incl.
assert (N5: j < n). generalize N1. generalize I. apply Nat.lt_trans.
assert (N6: 0 < n-j). rewrite Nat.add_lt_mono_r with (p := j). simpl.
replace (n-j+j) with (n). apply N5. symmetry. apply Nat.sub_add.
generalize N5. apply Nat.lt_le_incl.
assert (O: k * 2^m + 2^j < 2^n).
replace (k*2^m + 2^j < 2^n) with ((k*2^(m-j)+1)*(2^j) < 2^(n-j)*2^j).
apply Nat.mul_lt_mono_pos_r.
rewrite <- Nat.neq_0_lt_0. apply Nat.pow_nonzero. easy.
rewrite Nat.add_1_r. apply lt_even_even.
- destruct (m-j).
+ apply Nat.lt_irrefl in N4. contradiction N4.
+ rewrite Nat.pow_succ_r. rewrite Nat.even_mul. rewrite Nat.even_mul.
rewrite Nat.even_2. rewrite orb_true_r. reflexivity. apply Nat.le_0_l.
- destruct (n-j).
+ apply Nat.lt_irrefl in N6. contradiction N6.
+ rewrite Nat.pow_succ_r. rewrite Nat.even_mul.
rewrite Nat.even_2. rewrite orb_true_l. reflexivity. apply Nat.le_0_l.
- apply Nat.mul_lt_mono_pos_r with (p := 2^j).
rewrite <- Nat.neq_0_lt_0. apply Nat.pow_nonzero. easy.
rewrite <- Nat.pow_add_r.
rewrite <- Nat.mul_assoc. rewrite <- Nat.pow_add_r.
rewrite Nat.sub_add. rewrite Nat.sub_add. apply H.
apply Nat.lt_le_incl. apply N5.
apply Nat.lt_le_incl. apply I.
- rewrite Nat.mul_add_distr_r.
rewrite <- Nat.mul_assoc.
rewrite <- Nat.pow_add_r. rewrite Nat.mul_1_l. rewrite Nat.sub_add.
rewrite <- Nat.pow_add_r. rewrite Nat.sub_add. reflexivity.
apply Nat.lt_le_incl. apply N5.
apply Nat.lt_le_incl. apply I.
- assert ((S k)*2^m + 2^j < 2^(S n)).
apply Nat.add_lt_mono with (p := 2^m) (q := 2^n) in O.
Lemma tm_step_add_small_power :
forall (n m k j : nat),
1 < k -> k * 2^m < 2^n -> j < m
@ -1245,11 +1331,10 @@ Proof.
* rewrite tm_size_power2. apply H0.
+
rewrite nth_error_app2. rewrite nth_error_app2.
rewrite tm_size_power2.
rewrite nth_error_map.
rewrite nth_error_map.
rewrite nth_error_nth' with (d := false).
rewrite nth_error_nth' with (d := false).