This commit is contained in:
Thomas Baruchel 2022-11-22 18:24:29 +01:00
parent 00babc1c42
commit cd8f78090e

View File

@ -829,19 +829,65 @@ Proof.
reflexivity.
Qed.
Lemma tm_step_consecutive_pow2 :
Search nth_error.
(*
nth_error_None:
forall [A : Type] (l : list A) (n : nat),
nth_error l n = None <-> length l <= n
nth_error_Some:
forall [A : Type] (l : list A) (n : nat),
nth_error l n <> None <-> n < length l
*)
Lemma xxx : forall (a b : nat), a < b -> a <= b.
Proof.
intros a b.
intros H.
induction a. destruct b. reflexivity. induction b.
Admitted.
Lemma tm_step_consecutive_power2 :
forall (n k : nat) (l1 l2 : list bool) (b1 b2 b1' b2': bool),
tm_step n = l1 ++ b1 :: b2 :: l2
-> 2^k > S (length l1)
-> nth_error (tm_step n) ((length l1) + 2^k) = Some b1'
-> 2^k >= S (S (length l1)) (* TODO: remplacer par inégalité stricte plus jolie *)
-> nth_error (tm_step n) (length l1 + 2^k) = Some b1'
-> nth_error (tm_step n) (S (length l1) + 2^k) = Some b2'
-> (eqb b1 b2) = (eqb b1' b2').
Proof.
intros n k l1 l2 b1 b2 b1' b2'.
intros.
(* on doit travailler sur tm_step (S k) et remarquer que b1 et b2 sont
dans la première moitié *)
(* on commence donc déjà par tm_step k pou rmontrer la présence dedans *)
assert (2^k < 2^n). {
assert (I: nth_error (tm_step n) (length l1 + 2^k) <> None).
rewrite H1. easy.
rewrite nth_error_Some in I. rewrite tm_size_power2 in I.
assert (2^k <= length l1 + 2^k).
apply PeanoNat.Nat.le_add_l.
generalize I. generalize H3.
apply PeanoNat.Nat.le_lt_trans.
}
assert (k < n). {
generalize H3. apply PeanoNat.Nat.pow_lt_mono_r_iff.
assert (I: exists (l3 : list bool), tm_step k = l1 ++ b1 :: b2 :: l3).
{
}
Admitted.
Require Import BinPosDef.
@ -852,8 +898,7 @@ Fixpoint tm_bin_rev (n: nat) : list bool :=
| 0 => nil
| S n' => let t := tm_bin_rev n' in
let m := Pos.of_nat n' in
(xorb (hd true t)
(odd (Pos.size_nat
(xorb (hd true t) (odd (Pos.size_nat
match Pos.lxor m (Pos.pred m) with
| N0 => BinNums.xH
| Npos(p) => p
@ -866,14 +911,15 @@ Fixpoint tm_bin (n: nat) : list bool :=
| S n' => let t := tm_bin n' in
let m := Pos.of_nat n' in
t ++ [ xorb (last t true)
(odd (Pos.size_nat
match Pos.lxor m (Pos.pred m) with
(odd (Pos.size_nat match Pos.lxor m (Pos.pred m) with
| N0 => BinNums.xH
| Npos(p) => p
end)) ]
end.
Compute tm_bin 16 = tm_step 4.
Theorem tm_morphism_eq_bin : forall (k : nat), tm_step k = tm_bin (2^k).
Proof.
Admitted.
Theorem tm_step_consecutive : forall (n : nat) (l1 l2 : list bool) (b1 b2 : bool),