Update
This commit is contained in:
parent
8fd8fbf561
commit
c34cd4da2e
37
thue-morse.v
37
thue-morse.v
@ -982,7 +982,6 @@ Proof.
|
|||||||
apply H.
|
apply H.
|
||||||
- rewrite IHm. rewrite Nat.add_succ_r. rewrite Nat.add_succ_r.
|
- rewrite IHm. rewrite Nat.add_succ_r. rewrite Nat.add_succ_r.
|
||||||
|
|
||||||
|
|
||||||
assert (I : eqb (nth k (tm_step (S n + m)) false)
|
assert (I : eqb (nth k (tm_step (S n + m)) false)
|
||||||
(nth (S k) (tm_step (S n + m)) false)
|
(nth (S k) (tm_step (S n + m)) false)
|
||||||
= eqb (nth (k + 2 ^ S (n + m)) (tm_step (S (S n + m))) false)
|
= eqb (nth (k + 2 ^ S (n + m)) (tm_step (S (S n + m))) false)
|
||||||
@ -1028,42 +1027,6 @@ Qed.
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
Lemma tm_step_next_range2_neighbor : forall (n k : nat),
|
|
||||||
S k < 2^n ->
|
|
||||||
eqb (nth k (tm_step n) false) (nth (S k) (tm_step n) false)
|
|
||||||
= eqb
|
|
||||||
(nth (k + 2^n) (tm_step (S n)) false) (nth (S k + 2^n) (tm_step (S n)) false).
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
induction m.
|
|
||||||
- rewrite Nat.add_0_r. generalize H. apply tm_step_next_range2_neighbor.
|
|
||||||
- rewrite Nat.add_succ_r.
|
|
||||||
assert (I :
|
|
||||||
eqb (nth (k + 2 ^ n) (tm_step (S n + m)) false)
|
|
||||||
(nth (S k + 2 ^ n) (tm_step (S n + m)) false)
|
|
||||||
=
|
|
||||||
eqb (nth (k + 2 ^ n) (tm_step (S (S n + m))) false)
|
|
||||||
(nth (S k + 2 ^ n) (tm_step (S (S n + m))) false)
|
|
||||||
).
|
|
||||||
assert (S k < 2^(S n + m)).
|
|
||||||
induction m.
|
|
||||||
+ rewrite Nat.add_0_r. simpl. generalize H.
|
|
||||||
apply Nat.lt_lt_add_r.
|
|
||||||
+ assert (2^n < 2^(S n + S m)).
|
|
||||||
assert (n < S n + S m). rewrite Nat.add_succ_comm.
|
|
||||||
apply Nat.lt_add_pos_r. apply Nat.lt_0_succ.
|
|
||||||
generalize H0. assert (1 < 2). apply Nat.lt_1_2. generalize H1.
|
|
||||||
apply Nat.pow_lt_mono_r. generalize H0. generalize H.
|
|
||||||
apply Nat.lt_trans.
|
|
||||||
+
|
|
||||||
|
|
||||||
generalize H0.
|
|
||||||
apply tm_step_next_range2_neighbor.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Lemma tm_step_consecutive_power2 :
|
Lemma tm_step_consecutive_power2 :
|
||||||
forall (n k : nat) (l1 l2 : list bool) (b1 b2 b1' b2': bool),
|
forall (n k : nat) (l1 l2 : list bool) (b1 b2 b1' b2': bool),
|
||||||
|
Loading…
Reference in New Issue
Block a user