This commit is contained in:
Thomas Baruchel 2022-11-23 21:54:44 +01:00
parent 8fd8fbf561
commit c34cd4da2e

View File

@ -982,7 +982,6 @@ Proof.
apply H. apply H.
- rewrite IHm. rewrite Nat.add_succ_r. rewrite Nat.add_succ_r. - rewrite IHm. rewrite Nat.add_succ_r. rewrite Nat.add_succ_r.
assert (I : eqb (nth k (tm_step (S n + m)) false) assert (I : eqb (nth k (tm_step (S n + m)) false)
(nth (S k) (tm_step (S n + m)) false) (nth (S k) (tm_step (S n + m)) false)
= eqb (nth (k + 2 ^ S (n + m)) (tm_step (S (S n + m))) false) = eqb (nth (k + 2 ^ S (n + m)) (tm_step (S (S n + m))) false)
@ -1028,42 +1027,6 @@ Qed.
Lemma tm_step_next_range2_neighbor : forall (n k : nat),
S k < 2^n ->
eqb (nth k (tm_step n) false) (nth (S k) (tm_step n) false)
= eqb
(nth (k + 2^n) (tm_step (S n)) false) (nth (S k + 2^n) (tm_step (S n)) false).
induction m.
- rewrite Nat.add_0_r. generalize H. apply tm_step_next_range2_neighbor.
- rewrite Nat.add_succ_r.
assert (I :
eqb (nth (k + 2 ^ n) (tm_step (S n + m)) false)
(nth (S k + 2 ^ n) (tm_step (S n + m)) false)
=
eqb (nth (k + 2 ^ n) (tm_step (S (S n + m))) false)
(nth (S k + 2 ^ n) (tm_step (S (S n + m))) false)
).
assert (S k < 2^(S n + m)).
induction m.
+ rewrite Nat.add_0_r. simpl. generalize H.
apply Nat.lt_lt_add_r.
+ assert (2^n < 2^(S n + S m)).
assert (n < S n + S m). rewrite Nat.add_succ_comm.
apply Nat.lt_add_pos_r. apply Nat.lt_0_succ.
generalize H0. assert (1 < 2). apply Nat.lt_1_2. generalize H1.
apply Nat.pow_lt_mono_r. generalize H0. generalize H.
apply Nat.lt_trans.
+
generalize H0.
apply tm_step_next_range2_neighbor.
Lemma tm_step_consecutive_power2 : Lemma tm_step_consecutive_power2 :
forall (n k : nat) (l1 l2 : list bool) (b1 b2 b1' b2': bool), forall (n k : nat) (l1 l2 : list bool) (b1 b2 b1' b2': bool),