This commit is contained in:
Thomas Baruchel 2023-12-03 20:53:06 +01:00
parent 7dc1bb885c
commit a983bc226e

View File

@ -285,7 +285,73 @@ Proof.
intro H. destruct H as [p]. destruct H as [l].
destruct H. destruct H0. assert (I := H). rewrite Permutation_nth in H.
destruct H. destruct H2 as [f]. destruct H2. destruct H3.
exists p. exists (map f l). split. assumption. split.
apply FinFun.bInjective_bSurjective in H3.
apply FinFun.bSurjective_bBijective in H3.
destruct H3 as [g]. destruct H3.
exists (map (fun e => nth e base x) (map g (seq 0 (length base)))).
exists (map f l). split.
replace base with (map (fun e => nth e base x) (seq 0 (length base))) at 1.
apply Permutation_map. apply NoDup_Permutation_bis.
apply seq_NoDup. rewrite map_length. rewrite seq_length. easy.
intro a. intro J.
assert (a < 0 + length base). apply in_seq. assumption.
assert (forall x n h h', FinFun.bFun n h -> FinFun.bFun n h'
-> (forall y, y < n -> h (h' y) = y /\ h' (h y) = y)
-> x < n -> In x (map h (seq 0 n))).
intros x' n h h'. intros J1 J2 J3 J4. replace x' with (h (h' x')) at 1.
apply in_map. rewrite in_seq. split. apply le_0_n. apply J2. assumption.
apply J3 in J4. destruct J4. assumption. apply H7 with (h' := f); assumption.
assert (forall (b: list X),
map (fun e : nat => nth e b x) (seq 0 (length b)) = b).
intro b. induction b. reflexivity. (* rewrite <- IHb at 2. *)
replace (seq 0 (length (a :: b))) with (0:: map S (seq 0 (length b))).
rewrite map_cons. rewrite map_map.
assert (map (fun e : nat => nth e b x) (seq 0 (length b))
= map (fun x0 : nat => nth (S x0) (a :: b) x) (seq 0 (length b))).
destruct b. reflexivity. reflexivity.
rewrite <- H6. rewrite IHb. reflexivity.
rewrite seq_shift. rewrite cons_seq. reflexivity. apply H6.
exists (map (fun e => (nth (g e) base x)) (seq 0 (length base))).
exists (map f l). split.
apply Permutation_sym. apply nat_bijection_Permutation.
rewrite Permutation_image.
assert (forall (b: list X),
Permutation b (map (fun e => nth (g e) b x) (seq 0 (length b)))).
intro b. induction b. easy.
replace (seq 0 (length (a::b))) with ((seq 0 (length b)) ++ [ length b ]).
rewrite map_app.
admit. (* TODO *) (* easy. *)
split.
(* first case in split *)
rewrite H1.
@ -300,32 +366,70 @@ Proof.
apply in_eq. apply H2. apply K.
apply in_eq. rewrite H. apply K.
apply in_eq. intro y. intro L. apply K. apply in_cons. assumption.
apply H5. intro y. intro L.
apply H6. intro y. intro L.
assert (forall s z, In z s -> nth_error base z <> None -> z < length base).
intros s z. intros M1 M2. apply nth_error_Some. assumption.
apply H6 with (s := l). assumption.
apply H7 with (s := l). assumption.
assert (forall s (t: list X),
map Some t = map (nth_error base) s
-> In y s -> nth_error base y <> None).
intro s. induction s; intros t; intros M1 M2.
apply in_nil in M2. contradiction.
apply in_inv in M2. destruct M2. rewrite H7 in M1.
apply in_inv in M2. destruct M2. rewrite H8 in M1.
destruct t. inversion M1. inversion M1. easy.
destruct t. inversion M1. inversion M1.
apply IHs with (t := t). assumption. assumption.
generalize L. generalize H0. apply H7.
generalize L. generalize H0. apply H8.
(* second case in split *)
rewrite H0.
(*
apply FinFun.bInjective_bSurjective in H3.
apply FinFun.bSurjective_bBijective in H3. destruct H3 as [g].
destruct H3.
*)
assert (forall s, (forall y, In y s -> y < length base)
-> map (nth_error base) s = map (nth_error p) (map f s)).
-> map (nth_error base) s
= map (nth_error (map (fun e => nth (g e) base x) (seq 0 (length base)))) (map f s)).
intro s. rewrite map_map. induction s; intro K. reflexivity.
simpl. rewrite IHs.
assert (forall n, n < length base ->
nth_error base n = nth_error (map (fun e => nth (g e) base x) (seq 0 (length base))) (f n)).
intro n. induction n; intro M.
destruct base. destruct (f 0); reflexivity.
rewrite nth_error_nth' with (d := x).
rewrite nth_error_nth' with (d := x).
simpl.
assert (forall b,
nth_error (map (fun e => nth (g e) b x) (seq 0 (length b))) (f 0)
= nth_error b 0).
intro b. induction b. destruct (f 0); reflexivity.
replace (seq 0 (length (a0::b))) with ((seq 0 (length b)) ++ [ length b ]).
rewrite map_app.
induction a. destruct base. destruct (f 0); reflexivity.
destruct base. simpl.
intro s. induction s; intro K. reflexivity.
simpl. rewrite IHs.
@ -337,20 +441,16 @@ Proof.
assert (a < length base). apply K. apply in_eq.
assert (N := H6). apply H5 in N. destruct N.
*)
assert (a < length base). apply K. apply in_eq.
replace a with (f (g a)) at 1. rewrite H4.
assert (exists b, b < length base /\ a = g b).
exists (f a).
exists (f a). split. apply H2.
assumption. apply H5 in H6. destruct H6. rewrite H6. reflexivity.
rewrite <- H4. reflexivity. apply K.
apply in_eq. apply H2. apply K.
apply in_eq. rewrite H. apply K.
apply in_eq. intro y. intro L. apply K. apply in_cons. assumption.
apply H5. intro y. intro L.